Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/58888
Campo DC Valoridioma
dc.contributor.authorIbarrola-Ulzurrun, Edurneen_US
dc.contributor.authorDrumetz, Lucasen_US
dc.contributor.authorMarcello, Javieren_US
dc.contributor.authorGonzalo Martin,Consueloen_US
dc.contributor.authorChanussot, Jocelynen_US
dc.date.accessioned2019-12-17T09:00:24Z-
dc.date.available2019-12-17T09:00:24Z-
dc.date.issued2019en_US
dc.identifier.issn0196-2892en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/58888-
dc.description.abstractClimate change and anthropogenic pressure are causing an indisputable decline in biodiversity; therefore, the need of environmental knowledge is important to develop the appropriate management plans. In this context, remote sensing and, specifically, hyperspectral imagery (HSI) can contribute to the generation of vegetation maps for ecosystem monitoring. To properly obtain such information and to address the mixed pixels inconvenience, the richness of the hyperspectral data allows the application of unmixing techniques. In this sense, a problem found by the traditional linear mixing model (LMM), a fully constrained least squared unmixing (FCLSU), is the lack of ability to account for spectral variability. This paper focuses on assessing the performance of different spectral unmixing models depending on the quality and quantity of endmembers. A complex mountainous ecosystem with high spectral changes was selected. Specifically, FCLSU and 3 approaches, which consider the spectral variability, were studied: scaled constrained least squares unmixing (SCLSU), Extended LMM (ELMM) and Robust ELMM (RELMM). The analysis includes two study cases: 1) robust endmembers and 2) nonrobust endmembers. Performances were computed using the reconstructed root-mean-square error (RMSE) and classification maps taking the abundances maps as inputs. It was demonstrated that advanced unmixing techniques are needed to address the spectral variability to get accurate abundances estimations. RELMM obtained excellent RMSE values and accurate classification maps with very little knowledge of the scene and minimum effort in the selection of endmembers, avoiding the curse of dimensionality problem found in HSI.en_US
dc.languageengen_US
dc.relationProcesado Avanzado de Datos de Teledetección Para la Monitorización y Gestión Sostenible de Recursos Marinos y Terrestres en Ecosistemas Vulnerables.en_US
dc.relation.ispartofIEEE Transactions on Geoscience and Remote Sensingen_US
dc.sourceIEEE Transactions On Geoscience And Remote Sensing [ISSN 0196-2892], v. 57 (7), p. 4775-4788en_US
dc.subject250616 Teledetección (Geología)en_US
dc.subject.otherCASIen_US
dc.subject.otherHyperspectral image classificationen_US
dc.subject.otherSpectral unmixingen_US
dc.subject.otherHughes phenomenonen_US
dc.subject.otherEndmembersen_US
dc.subject.otherSpectral variabilityen_US
dc.titleHyperspectral Classification Through Unmixing Abundance Maps Addressing Spectral Variabilityen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TGRS.2019.2892903
dc.identifier.scopus85068311334
dc.identifier.isi000473436000048-
dc.contributor.authorscopusid57193098496
dc.contributor.authorscopusid56690503500
dc.contributor.authorscopusid6602158797
dc.contributor.authorscopusid36561411500
dc.contributor.authorscopusid6602159365
dc.identifier.eissn1558-0644-
dc.description.lastpage4788-
dc.identifier.issue7-
dc.description.firstpage4775-
dc.relation.volume57-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid5530081
dc.contributor.daisngid2928419
dc.contributor.daisngid702897
dc.contributor.daisngid1398100
dc.contributor.daisngid31284691
dc.contributor.wosstandardWOS:Ibarrola-Ulzurrun, E
dc.contributor.wosstandardWOS:Drumetz, L
dc.contributor.wosstandardWOS:Marcello, J
dc.contributor.wosstandardWOS:Gonzalo-Martin, C
dc.contributor.wosstandardWOS:Chanussot, J
dc.date.coverdateJulio 2019
dc.identifier.ulpgces
dc.description.sjr2,616
dc.description.jcr5,855
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0001-5062-7491-
crisitem.author.orcid0000-0002-9646-1017-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameIbarrola Ulzurrun, Edurne-
crisitem.author.fullNameMarcello Ruiz, Francisco Javier-
crisitem.author.fullNameGonzalo Martin,Consuelo-
crisitem.project.principalinvestigatorMarcello Ruiz, Francisco Javier-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

34
actualizado el 24-nov-2024

Citas de WEB OF SCIENCETM
Citations

27
actualizado el 24-nov-2024

Visitas

77
actualizado el 14-oct-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.