Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/58355
DC FieldValueLanguage
dc.contributor.advisorMarrero Callicó, Gustavo Ivánes
dc.contributor.advisorSarmiento Rodríguez, Robertoes
dc.contributor.authorFabelo Gómez, Himar Antonioes
dc.date.accessioned2019-12-12T11:02:58Z-
dc.date.available2019-12-12T11:02:58Z-
dc.date.issued2019-
dc.identifier.urihttp://hdl.handle.net/10553/58355-
dc.descriptionPrograma de doctorado: Tecnologías de Telecomunicación e Ingeniería Computacionalen_US
dc.description.abstractHyperspectral imaging (HSI) allows the acquisition of large numbers of spectral bands throughout the electromagnetic spectrum with respect to the surface of scenes captured by sensors. Using this information and a set of complex classification algorithms, it is possible to determine which material or substance is located in each pixel. One of the major benefits of this technology is that it can be used as a guidance tool during brain tumor resections. Unlike other tumors, brain tumor infiltrates the surrounding normal brain tissue and thus their borders are indistinct and extremely difficult to identify to the surgeon’s naked eye. The surrounding normal brain tissue is critical and there is no redundancy, as in many other organs, where the tumor is commonly resected together with an ample surrounding block of normal tissue. In brain tumors, it is essential to accurately identify the margins of the tumor to resect as less healthy tissue as possible. In this sense, the work performed in this thesis aims to exploit the characteristics of HSI to develop an intraoperative demonstrator capable of performing a precise localization of malignant tumors during brain surgical procedures, expecting to improve the outcomes of the surgery. This demonstrator was able to generate thematic maps of the exposed brain surface using spectral information of the range comprised between 400 and 1000 nm, achieving intraoperative processing time (~1 min). These thematic maps distinguish between four different classes (normal tissue, tumor tissue, hypervascularized tissue and background), where the tumor boundaries can be easily identifiable. The thematic maps demonstrate that the system did not introduce false positives in the parenchymal area when no tumor was present and it was able to identify low-grade tumors that were not used to train the brain cancer detection algorithm, resulting in a robust and generalized classification algorithm. Additionally, a preliminary study to improve the accuracy results using deep learning techniques was performed. This study achieved promising results in the discrimination between tumor and normal brain tissue, being a suitable method to further improve the outcomes of the intraoperative demonstrator and, hence, the outcomes of the neurosurgical procedures.en_US
dc.languageengen_US
dc.subject3314 Tecnología médicaen_US
dc.titleContributions to the design and implementation of algorithms for the classification of hyperspectral images of brain tumors in real-time during surgical procedureses
dc.typeinfo:eu-repo/semantics/doctoralThesisen_US
dc.typeThesisen_US
dc.contributor.centroIU de Microelectrónica Aplicadaen_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Tesis doctoralen_US
dc.utils.revisionen_US
dc.identifier.matriculaTESIS-1636491es
dc.identifier.ulpgcen_US
dc.contributor.programaPrograma de Doctorado en Tecnologías de Telecomunicación e Ingeniería Computacional por la Universidad de Las Palmas de Gran Canariaes
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.advisor.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.advisor.deptIU de Microelectrónica Aplicada-
crisitem.advisor.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.advisor.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.advisor.deptIU de Microelectrónica Aplicada-
crisitem.advisor.deptDepartamento de Ingeniería Electrónica y Automática-
Appears in Collections:Tesis doctoral
Thumbnail
Adobe PDF (15,48 MB)
Show simple item record

Page view(s)

316
checked on Aug 24, 2024

Download(s)

612
checked on Aug 24, 2024

Google ScholarTM

Check


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.