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Abstract 

Hyperspectral imaging allows the acquisition of large numbers of spectral bands 

throughout the electromagnetic spectrum (within and beyond the visual range) with 

respect to the surface of scenes captured by sensors. Using this information and a set of 

complex classification algorithms, it is possible to determine which material or 

substance is located in each pixel. One of the major benefits of this technology is that it 

can be used as a guidance tool during brain tumor resections. Unlike other tumors, 

brain tumor infiltrates the surrounding normal brain tissue and thus their borders are 

indistinct and extremely difficult to identify to the surgeon‘s naked eye. The 

surrounding normal brain tissue is critical and there is no redundancy, as in many 

other organs, where the tumor is commonly resected together with an ample 

surrounding block of normal tissue. This is not possible in the brain, where it is 

essential to accurately identify the margins of the tumor to resect as less healthy tissue 

as possible. In this sense, the work performed in this thesis aims to exploit the 

characteristics of hyperspectral imaging to develop an intraoperative demonstrator 

capable of performing a precise localization of malignant tumors during brain surgical 

procedures. A precise delineation of tumor boundaries is expected to improve the 

outcomes of surgery.  

As a proof-of-concept, the demonstrator developed in this work was able to generate 

thematic maps of the exposed brain surface using spectral information of the range 

comprised between 400 and 1000 nm. These thematic maps distinguish between four 

different classes previously established: normal tissue, tumor tissue, blood 

vessels/hypervascularized tissue, and background. In these maps, the tumor 

boundaries can be easily identifiable. A hyperspectral brain cancer detection algorithm, 

based on a mix of unsupervised and supervised machine learning approaches, was 

developed and implemented in the system. The supervised algorithm was trained by 

employing a labeled dataset composed of more than 300,000 spectral signatures, 

extracted by medical doctors from 36 different hyperspectral cubes captured with the 

acquisition system from 22 different patients from Spain and United Kingdom. The 

implementation of the algorithm was partitioned between the control unit and a 

hardware accelerator, where the higher computational tasks were implemented in a 

many-core platform to achieve intraoperative processing time (~1 min).  

The intraoperative demonstrator was validated using seven hyperspectral images 

obtained in four neurosurgical operations. The thematic maps demonstrate that the 

system did not introduce false positives in the parenchymal area when no tumor was 

present and it was able to identify low grade tumors that were not used to train the 

brain cancer detection algorithm, resulting in a robust and generalized classification 

algorithm. Additionally, a preliminary study to improve the accuracy results of the 

hyperspectral brain cancer detection algorithm using deep learning techniques was 

performed. This study achieved promising results in the discrimination between tumor 

and normal brain tissue, being a suitable method to further improve the outcomes of 

the intraoperative demonstrator and, hence, the outcomes of the neurosurgical 

procedures.  
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Resumen 

Las imágenes hiperespectrales permiten la adquisición de un gran número de 

bandas espectrales en todo el espectro electromagnético (dentro y más allá del alcance 

visual del ojo humano) conteniendo información sobre la superficie de las escenas 

capturadas por los sensores. Usando esta información y un conjunto de complejos 

algoritmos de clasificación, es posible determinar qué material o sustancia se encuentra 

en cada píxel. Uno de los principales beneficios de esta tecnología es que puede 

utilizarse como una herramienta de asistencia visual durante las resecciones de 

tumores cerebrales. A diferencia de otros tumores, el tumor cerebral se infiltra en el 

tejido normal circundante y, por lo tanto, sus bordes son indistinguibles y 

extremadamente difíciles de identificar mediante simple inspección visual del cirujano. 

El tejido cerebral normal circundante es crítico y no hay redundancia, como en muchos 

otros órganos donde el tumor se reseca normalmente junto con un amplio bloque 

circundante de tejido normal. Esto no es posible en el cerebro, donde es esencial 

identificar con precisión los márgenes del tumor para resecar la menor cantidad posible 

de tejido sano. En este sentido, el trabajo realizado en esta tesis pretende explotar las 

características de las imágenes hiperespectrales para desarrollar un demostrador 

intraoperatorio capaz de proporcionar una localización precisa del tumor durante los 

procedimientos neuroquirúrgicos. Se espera que una delimitación precisa de los límites 

del tumor mejore los resultados de la cirugía. 

Como prueba de concepto, el demostrador desarrollado en este trabajo es capaz de 

generar mapas temáticos de la superficie del cerebro expuesta utilizando información 

espectral del rango comprendido entre 400 y 1000 nm. Estos mapas temáticos 

distinguen entre cuatro clases diferentes previamente establecidas: tejido normal, 

tejido tumoral, tejido hipervascularizado y fondo. En estos mapas, los límites del tumor 

pueden ser fácilmente identificados. Para este fin se desarrolló e implementó en el 

sistema un algoritmo para la detección de cáncer cerebral basado en tecnología 

hiperespectral, usando técnicas de aprendizaje automático no supervisado y 

supervisado. El algoritmo supervisado se entrenó empleando un conjunto de datos 

etiquetados compuesto por más de 300,000 firmas espectrales, extraídas por los 

médicos involucrados en el proyecto a partir de 36 cubos hiperespectrales capturados 

con el sistema de adquisición en 22 operaciones neuroquirúrgicas realizadas en España 

y el Reino Unido. La implementación del algoritmo se dividió entre la unidad de control 

del sistema y un acelerador de hardware, donde las tareas con mayor carga 

computacional se implementaron en una plataforma multi-núcelo para lograr el 

procesamiento intraoperativo de las imágenes (~ 1 min). 

El demostrador intraoperatorio desarrollado se validó utilizando siete imágenes 

hiperespectrales obtenidas en cuatro operaciones neuroquirúrgicas. Los mapas 

temáticos demuestran que el sistema no introduce falsos positivos en el área 

parenquimatosa cuando no existe tumor y que es capaz de identificar diferentes tipos 

de tumores que no estaban presentes en la base de datos de entrenamiento. Además, se 

realizó un estudio preliminar para mejorar los resultados de precisión del algoritmo de 

utilizando técnicas de aprendizaje profundo. Este estudio logró resultados 

prometedores en la discriminación entre el tumor y el tejido cerebral normal, siendo un 

método adecuado para mejorar aún más los resultados del demostrador intraoperatorio 

y, por lo tanto, los resultados de los procedimientos neuroquirúrgicos. 
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Chapter 1: Introduction 

1.1 Motivations 

Currently, patients with brain cancer continue to have very poor survival rates, being 

surgery one of the mainstays of treatment, together with radiotherapy and 

chemotherapy [1]. Brain tumors are classified based on their histology and molecular 

parameters [2], where malignant gliomas are the most common form of primary brain 

tumors in adults, causing between 2 and 3% of cancer deaths worldwide [3]. Since 

brain tumors diffusely infiltrate into the surrounding normal brain tissue (especially 

gliomas), it is extremely difficult for the surgeon to accurately differentiate between 

tumor and normal brain tissue with the naked eye. In some cases, unintentionally 

leaving behind tumor tissue after the resection is unavoidable, and in other cases, too 

much normal brain tissue is resected in an effort to ensure complete excision. In this 

last case, over-resection can produce permanent neurological deficits that affect patient 

quality of life [4]. In contrast, several studies have demonstrated that tumor tissue left 

behind during surgery is a major cause of morbidity and mortality and represents the 

most common cause of tumor progression [5]–[7]. 

Several image guidance tools, such as intraoperative neuronavigation, intraoperative 

magnetic resonance imaging (iMRI), and fluorescent tumor markers (for example 5-

aminolevulinic acid, 5-ALA), have been commonly used to assist surgeons in the 

identification of brain tumor boundaries. However, these technologies have several 

limitations. One limitation is related to the brain shift phenomenon [8], which is 

produced due to the craniotomy. In this process, the opening of the skull and dura 

inevitably leads to movement of the brain. This typically manifests as herniation of the 

brain into the craniotomy defect under pressure from the underlying tumor, or the 

slump of the brain due to drainage of cerebrospinal fluid and the administration of 

mannitol. Similarly, following resection of the tumor, the residual brain tissue may 

slump towards the surgical cavity. This brain deformation invalidates the patient-to-

image mapping and reduces the effectiveness of using pre-operative images for 

intraoperative surgical guidance. Thus, neuronavigation systems relying on 

preoperative image data are decreasing accuracy as the surgical procedure progresses 

[9]–[11]. On the contrary, iMRI solves the problem of brain shift mapping the tumor 

margins intraoperatively. However, this method has poor spatial resolution and 

significantly extends the duration of the surgery, obtaining a limited number of images 

during the surgical procedure [12]. Finally, although 5-ALA can identify the tumor 

boundaries, it produces relevant knock-on effects for the patient and can only be used 
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for high-grade tumors [13], [14]. Thus, there is no current device that can help in the 

accurate definition of brain tumor boundaries during surgical procedures. A label-free 

and non-ionizing imaging modality would be an ideal solution to this problem. 

In this sense, hyperspectral imaging (HSI) is an imaging modality that integrates 

conventional imaging and spectroscopy methods to obtain both spatial and spectral 

information of a scene [15]. Unlike conventional RGB (red, green and blue) image, 

which only captures three diffuse Gaussian spectral bands in the visible spectrum (from 

400 to 700 nm), HSI increases the amount of data acquired beyond the capabilities of 

the human eye [16]. Hyperspectral (HS) sensors measure the aggregate signal of 

reflected, absorbed and emitted radiance at specific wavelengths of the material that is 

being observed. These sensors are capable of capturing a very large number of 

contiguous spectral bands (also called spectral wavelengths or spectral channels) 

across the electromagnetic spectrum (ES), obtaining a vector of radiance values for 

each pixel of the image that is commonly called spectral signature [15]. Image 

processing algorithms utilize these spectral signatures to automatically differentiate the 

materials observed by the sensor at each pixel [17]. These methods rely on the basis 

that different molecular compositions of each material present in the nature or 

artificially generated have different responses to the incident light [15]. 

HSI has shown considerable early promise as a non-invasive and non-ionizing 

technique, supporting rapid acquisition and analysis of diagnostic information in 

several fields, such as remote sensing [18], [19], archeology [20], [21], drug 

identification [22], [23], forensics [24]–[26], defense and security [27], [28], 

agriculture [29], [30], food safety inspection and control [31]–[33], among many 

others. Particularly, several studies can be found in the literature where HSI is applied 

to different medical applications [34], [35]. It has been proven that the interaction 

between the electromagnetic radiation and matter carries useful information for 

medical diagnostic proposes [34]. Alternatively to other existing technologies for 

assessing the diagnosis, one of the strengths offered by HSI is being completely non-

invasive, non-contact and label-free sensing technique. In medical applications, this 

technology has been employed in several different areas like blood vessel visualization 

enhancement [36], [37], intestinal ischemia identification [38], oximetry of the retina 

[39]–[41], estimation of the cholesterol levels [42], chronic Cholecystitis detection [43], 

diabetic foot [44], etc. In recent years, medical HSI has started to achieve promising 

results with respect to cancer detection through the utilization of cutting-edge machine 

learning algorithms and modern computational power. Thus, the main motivation of 

this thesis is the application of HSI techniques for the development of a non-invasive, 

non-ionizing and non-contact surgical aid visualization tool able to assist 

neurosurgeons during the brain tumor resection, identifying and delineating the tumor 

boundaries in real-time throughout the surgical procedure.   

Concretely, the work performed in this thesis describes the main outcomes achieved 

during the collaboration between the Institute for Applied Microelectronics (IUMA) of 

the University of Las Palmas de Gran Canaria (ULPGC) with several relevant research 

institutions, such as the Centre of Software Technologies and Multimedia Systems 

(CITSEM) of the Universidad Politécnica de Madrid (UPM), the Hamlyn Centre of the 

Imperial College London (ICL), the Ecole Nationale Supérieure des Mines de Paris 

(ENSMP), the Wessex Neurological Centre of the University Hospital of Southampton 

(UHS) and the Department of Neurosurgery of the University Hospital Doctor Negrin 
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of Las Palmas de Gran Canaria. These collaborations were framed within the European 

project HELICoiD (HypErspectraL Imaging Cancer Detection) by the Research 

Executive Agency, under Grant Agreement 618080, through the Future and Emerging 

Technologies (FET-Open) Programme, under the 7th Framework Programme of the 

European Union. HELICoiD was a collaborative project between four universities, 

three industrial partners and two hospitals, whose main goal was to use HSI to 

generalize a methodology to discriminate between normal and malignant tissues in 

real-time during neurosurgical procedures. For this purpose, an intraoperative 

demonstrator was designed and built capable of acquiring hyperspectral (HS) 

intraoperatively and process them in order to assist neurosurgeons during the hard 

task of brain tumor resection. Through the development of a complex HS classification 

algorithm, neurosurgeons were able to visualize a thematic map where the tumor 

boundaries were accurately delineated. This new methodology will allow surgeons to 

avoiding the excessive extraction of normal brain tissue, preventing small remnants of 

tumors from being left behind. Such precise delimitation of the tumors boundaries will 

improve the results of the surgery and is expected to improve patient outcomes in the 

future. 

In addition, thanks a collaboration carried out between the IUMA and the 

Department of Bioengineering of the University of Texas at Dallas (UTD), complex 

deep learning (DL) algorithms were studied and employed to accelerate and improve 

the accuracy of the results obtained within the HELICoiD project. This research was 

framed in the ITHaCA (Hyperspectral Identification of Brain Tumors) project funded 

by the Canary Islands Government through the ACIISI (Canarian Agency for Research, 

Innovation and the Information Society) under Grant Agreement ProID2017010164.  

1.2 Objectives 

The main objective of this thesis is to demonstrate that HSI is capable of accurately 

delineate the boundaries between normal brain and tumor tissue during surgical 

procedures, providing the results in real-time to help neurosurgeons during the tumor 

resection decision and, thus, improving the outcomes of the surgery. In order to achieve 

this main goal, several specific objectives were raised at the beginning of this thesis:  

 To acquire the required knowledge about the existing different 

algorithms for the pre and post-processing of HS images, analyzing their 

advantages and disadvantages as well as their computational requirements and 

focusing the analysis in medical applications.  

 To design and develop an intraoperative HS acquisition system 

adequate for surgical environments, which allows the generation of an in-vivo 

HS human brain image database that will be used for the development of 

the HS brain cancer detection algorithms.  

 To design and develop a high-level HS classification algorithm capable 

of discriminate and delineate the boundaries between tumor and normal tissues 

using the acquired in-vivo HS human brain image database, taking into account 

the computational requirements of the developed algorithm for its subsequent 

implementation and acceleration.  
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 To integrate the developed algorithm within the intraoperative HS 

acquisition system to achieve the fully operational intraoperative HS 

demonstrator, performing an exhaustive quantitative and qualitative assessment 

and validation of the results obtained during surgical procedures. 

1.3 Thesis organization 

This thesis has been structured in 8 chapters that are interrelated as presented in 

Figure 1-1. A brief explanation of each chapter is presented next. 

Chapter 1: Introduction. In the present chapter, the main motivations and 

objectives that have led to the development of the thesis are described. 

In addition, the structure of the document is presented. 

Chapter 2: State-of-the-art in cancer detection using hyperspectral 

images. In this chapter, the current intraoperative surgical guidance 

tools employed in brain surgeries are described. Additionally, the HSI 

concept and a brief description of the main algorithms employed process 

this type of data, are presented. Finally, a brief review of the literature in 

the use of HSI in the medical field for cancer analysis is detailed. 

Chapter 3: Intraoperative hyperspectral acquisition and processing 

system. This chapter provides an overview of the HSI instrumentation 

employed in order to develop the intraoperative demonstrator for brain 

cancer detection as well as a detailed description of the developed 

system. In addition, the results of a repeatability analysis performed to 

the HS acquisition system are presented. 

Chapter 4: In-vivo hyperspectral human brain image database. This 

chapter presents the procedure carried out to obtain the HS images of 

the human brain surface that were stored in the in-vivo HS human brain 

image database. Furthermore, the process to label the samples as tumor 

or normal tissue for the supervised algorithm development is described. 

Finally, a detailed description of the entire database is provided. 

Chapter 5: Hyperspectral brain cancer detection algorithm. In this chapter, 

a detailed description of each part of the HS brain cancer detection 

algorithm developed in this thesis is presented. Furthermore, an intra-

patient quantitative and qualitative assessment of the algorithm is 

provided. 

Chapter 6: HS brain cancer detection algorithm fine-tuning and 

acceleration. In this chapter, the optimizations performed to the HS 

brain cancer detection algorithm to reduce the execution time and to 

achieve more accurate results during surgical procedures are described. 

Furthermore, a brief explanation of the algorithm implementation and 

acceleration onto the intraoperative demonstrator is provided. Finally, 

the validation results of the final intraoperative demonstrator performed 

during surgical operations are presented. 
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Chapter 7: Improvement of the classification results using Deep Learning 

techniques. This chapter presents the development of an improved HS 

brain cancer detection algorithm that employs deep learning 

architectures to increase the accuracy of the classification results 

previously obtained with traditional machine learning techniques. 

Moreover, an exhaustive quantitative comparison between the different 

approaches is provided as well as new method to adjust the classification 

results taking into account the operating surgeon criteria. 

Chapter 8: Conclusions & future lines. This chapter concludes the work 

presented in this thesis by summarizing the advantages, disadvantages 

and main contributions of the methods developed in this work as well as 

presenting the current works that indicates future research lines of this 

thesis.  

Annex A:  HS Brain cancer detection algorithm implementation and 

acceleration using GPUs. In this annex, the work performed in 

collaboration between the ULPGC and the University of Pavia for the 

implementation and acceleration of the HS brain cancer detection 

algorithm onto GPU-based architectures is explained.  

Annex B:   Publications. In this annex, all the scientific communications 

performed during the development of the work described in this thesis 

and the different collaborations performed with other institutions and 

research groups are detailed. Specifically, 17 articles published in 

journals indexed in the JCR (Journal Citation Reports) (two of them 

submitted and the rest already published), 18 peer-reviewed conference 

papers (two of them submitted and the rest already published) and 1 

patent have been achieved during the course of this thesis. In total, 36 

scientific contributions have been accomplished.  

Annex C:   Sinopsis en español. In this annex, a brief summary of the thesis is 

presented in Spanish.  

Bibliography: This thesis manuscript concludes with the list of references employed 

during the elaboration of this document.  

 

Figure 1-1: Thesis organization and interrelation between chapters. 
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Chapter 2: State-of-the-art in cancer 

detection using hyperspectral images 

2.1 Introduction 

This chapter provides an overview of the current state-of-the-art on the areas related 

with the development of this thesis. First, the current intraoperative surgical guidance 

tools that are commonly used during brain surgeries to assist neurosurgeons in the 

resection of brain tumors are described. Secondly, an introduction of the HSI concept 

and a brief description of the main algorithms employed process this type of data are 

presented. Finally, a brief review of the studies that can be found in the literature 

related with the use of HSI in the medical field for cancer analysis is detailed. 

2.2 Intraoperative brain surgical guidance tools 

Currently, patients with brain cancer continue to have very poor survival rates. Brain 

tumors are classified based on their histology and molecular parameters [2]. Malignant 

gliomas are the most common form of primary brain tumors in adults and cause 

between 2 and 3% of cancer deaths worldwide [3]. Figure 2-1 shows the estimated 

standardized rate per 100,000 habitants of incidence and mortality of people affected 

by brain cancer and central nervous cancer in Europe in 2012. It seems that both 

incidence and mortality is higher in men (Figure 2-1.a), having a total rate of 7.8 and 

6.0 per 100,000 habitants respectively in the entire Europe. Women have also a 

relative high rate (Figure 2-1.b), reaching a total rate of incidence and mortality of 5.6 

and 4.0 per 100,000 habitants respectively also in the entire Europe. In addition to 

radiotherapy and chemotherapy, surgery is one of the major treatment options for 

brain tumors [1]. However, because brain tumors infiltrate and diffuse into the 

surrounding normal brain, the surgeon‘s naked eye is often unable to accurately 

distinguish between tumor and normal brain tissue. Often, tumor tissue is either 

unintentionally left behind during surgery or too much normal brain tissue is taken out. 

Studies have shown that tumor tissue left behind during surgery is the most common 

cause of tumor recurrence and is a major cause of morbidity and mortality [5]–[7]. On 

the other hand, over-resection of brain tumor tissues has also been shown to cause 

permanent neurological damages that affect patients‘ quality of life [4].  
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Several image guidance tools, suczh as intraoperative neuronavigation, 

intraoperative magnetic resonance imaging (iMRI), ultrasound and fluorescent tumor 

markers (for example 5-aminolevulinic acid, 5-ALA), have been commonly used to 

assist surgeons in the identification of brain tumor boundaries. However, these 

technologies have several limitations. One limitation is related to the brain shift 

phenomenon [8]. During craniotomy, the opening of the skull and dura inevitably leads 

to movements of the brain. This typically manifests as herniation of the brain into the 

craniotomy defect under pressure from the underlying tumor, or the slump of the brain 

due to drainage of cerebrospinal fluid and the administration of mannitol. Similarly, 

following resection of the tumor, the residual brain tissue may slump towards the 

surgical cavity. This brain deformation invalidates the patient-to-image link and 

reduces the effectiveness of using pre-operative images for intraoperative surgical 

guidance. Thus, neuronavigation systems (Figure 2-2) enable the correlation of 

preoperative imaging (computed tomography, CT, or magnetic resonance image, MRI) 

with landmarks before and during surgery, doubling the complete-removal success rate 

but just in only around one third of patients [45]. Since neuronavigation systems rely 

on preoperative image data, the accuracy decreases as the surgical procedure 

progresses due to the brain shift [9]–[11]. 

  
(a) (b) 

Figure 2-1: Estimated incidence and mortality from brain cancer and central 

nervous system per 100,000 habitants in (a) men and (b) women in 2012 in Europe. 

iMRI (Figure 2-3) solves the problem of brain shift, mapping the tumor margins 

intraoperatively, but this method has poor spatial resolution and significantly extends 

the duration of the surgery (between 20 and 75 minutes per image [46]), with a limited 

number of images that can be obtained [12]. It is also unclear how the contrast-

enhancing portion of the tumor is related to pathology and, taking into account the 

infiltrating nature of brain tumors, if this represents the ideal target for resection. 

Furthermore, MRI cannot distinguish between electro-cauterized tissue and the 

contrast-enhancing areas [45], and its ability to demarcate borders is debated.  
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(a) (b) 

Figure 2-2: Image-guided stereotaxis (IGS) (also called neuronavigation) 

system used to locate the position of a tumor in a MRI. (a) Pointer over the exposed 

brain; (b) Screen capture of the neuronavigation system where the green cross indicates the 

position of the pointer in the MRI. 

     

Figure 2-3: Intraoperative magnetic resonance imaging system. 

On the other hand, ultrasound is inexpensive, real-time, unaffected by brain shift, 

and for most gliomas it can identify the contrast-enhancing portion seen on MRI, 

reliably identifying tumor margins [47]–[50]. However, it has been reported that the 

use of intraoperative ultrasound can cause the resection of histologically-normal 

parenchyma [48]. Furthermore, radiotherapy leaves borders difficult to demarcate [49] 

and it is also time-consuming, operator-dependent [50], requiring large experience by 

the user to interpret the ultrasound images, and lacks image resolution [51]. 

Finally, the hitherto discussed imaging technologies focus on the tumor morphology, 

not on its physiological function. This physiological function may show active tumor 

areas within the apparent normal morphology of the brain, especially in the infiltrating 

margins of a glioma. Fluorescence imaging with 5-ALA exogenous addresses this 

problem to a certain extent (Figure 2-4). 5-ALA is a naturally-found precursor to 

hemoglobin that results in intra-tumor synthesis of fluorescent porphyries in high-

grade gliomas [52], [53], which under ultraviolet light (between 375 and 440 nm) 

produce the tumor tissue to emit red light. Although 5-ALA can identify the tumor 

boundaries, it produces relevant knock-on effects for the patient and can only be used 

for high-grade tumors [14], [52]. Thus, there is no current a device that can help in the 

accurate definition of brain tumor boundaries during surgical procedures. Label free, 

non-ionizing imaging modalities that rely on intrinsic properties of tumors or normal 

brain could be a potential solution to the above problem. 
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Figure 2-4: Fluorescence-guided surgery using 5-Ala system. 

2.3 Introduction to hyperspectral imaging 

Hyperspectral imaging, also known as imaging spectroscopy, is the term designated 

to the technology that integrates conventional imaging and spectroscopy methods to 

obtain both spatial and spectral information of an object. HSI sensors measure the 

reflected, absorbed or emitted radiance at specific wavelengths of the material that is 

being observed. These sensors are capable of capturing a very large number of 

contiguous spectral bands (spectral wavelengths) within the electromagnetic spectrum 

(ES), obtaining a vector of radiance values for each pixel of the image that is commonly 

called spectral signature [15]. Employing these spectral signatures, specific image 

processing algorithms are able to automatically differentiate the materials observed by 

the sensor at each pixel [17]. These methods rely on the basis that different molecular 

compositions of each material present in the nature or artificially generated have 

different responses to the incident light [15].  

HSI sensors generates a three dimensional (3D) data structure, where the spatial 

information is contained in the first two dimensions, while the third dimension stores 

the spectral information of the scene. This 3D data structure is called hyperspectral 

cube. Figure 2-5 shows the information structure of a HS cube. Each radiance value 

that conforms the HS cube is called voxel and each pixel of the image is formed by a 

certain number of voxels equal to the number of spectral bands (also called spectral 

channels) of the HS cube. Therefore, from each pixel of the image, it is possible to 

obtain one spectral signature (containing all the spectral information provided by the 

HS sensor) and at a certain wavelength, it is possible to obtain a gray scale image of the 

captured scene (containing the spatial information provided by the image sensor). 

 

Figure 2-5: HSI basis. Basic structure of a HS cube, single band representation at a 

certain wavelength and spectral signature of a single pixel. 
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2.3.1 Hyperspectral imaging cameras 

Since HS sensors have not the human eye limitations, they are able to collect 

information across the ES, beyond the human eye capabilities that covers on average 

the range from 400 to 700 nm [16]. Consequently, HSI increases the amount of 

information acquired from a certain scene compared with a conventional RGB (Red, 

Green and Blue) image that only captures three spectral bands in the visual spectrum. 

Depending on the type of sensor employed, HS cameras will cover different spectral 

ranges. Figure 2-6 shows the partition of the entire ES and the range where HS 

images are commonly captured depending on the sensor type. Charge-coupled device 

(CCD) silicon based sensors cover the visible and near-infrared (VNIR) spectrum that 

conforms the range comprised between 400 and 1000 nm. The standard indium 

gallium arsenide (InGaAs) sensors are able to capture HS images in the near-infrared 

(NIR) range, between 900 and 1700 nm, while the extended InGaAs sensors can spread 

the range to 2500 nm. Other types of sensors can reach larger spectral ranges. For 

example, the mercury cadmium telluride (MCT) sensors are able to acquire HS images 

in the short-wavelength infrared (SWIR) range, from 1000 to 2500 nm, being able also 

to reach 25,000 nm in some specific systems [54].  

 

Figure 2-6: Electromagnetic spectrum. Hyperspectral imaging is commonly employed 

between the visible and the medium-infrared range. 

HS cameras are mainly classified into four different types (Figure 2-7) depending 

on the method employed to obtain the HS cube: whiskbroom (point-scanning) 

cameras, pushbroom (line-scanning) cameras, cameras based on spectral scanning 

(area-scanning or plane-scanning), and snapshot (single shot) cameras [31]. Each type 

of camera stores the HS data in a different way. Figure 2-8 shows the three most 

commonly used types of HS data storage formats. Depending on the specifications and 

requirements of the application where the system is going to be used, some HS systems 

are more suitable than others.   

Whiskbroom cameras (Figure 2-7.a) are characterized by capturing one single pixel 

at one time containing all its spectral information. The rest of the pixels of the scene are 

captured by scanning both spatial dimensions (x and y). This type of cameras usually 

stores the HS data in the band-interleaved-by-pixel (BIP) format (Figure 2-8.c), being 

the suitable format to quickly access the spectral information of each pixel. 

Whiskbroom cameras have the main disadvantage of being very time-consuming 

during the image acquisition. However, they can achieve very high spectral resolutions.  

Related with the previous camera type, pushbroom cameras (Figure 2-7.b) offer a 

faster scanning solution, obtaining also high spectral resolution. In this case, the 

camera captures one line of pixels of the scene (y) at one time. The other spatial 

dimension (x axis) is obtained moving the field-of-view (FOV) of the camera in that 

direction. In this case, the HS data are normally stored following the band-interleaved-
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by-line (BIL) format (Figure 2-8.b), since the pixels are captured line by line with 

their entire spectral information. Pushbroom cameras are the most common systems in 

remote sensing field and other industrial sectors due to their high spectral resolution, 

having reduced capturing times with respect to the whiskbroom cameras.  

On the other hand, HS cameras based on spectral scanning (Figure 2-7.c) are able 

to obtain the entire spatial information (x and y) of the scene for a certain wavelength 

at one time, performing a scanning in the spectral dimension (λ). This type of cameras 

usually stores the HS data in the band sequential (BSQ) format (Figure 2-8.a), staking 

every single band captured by the sensor. These cameras can achieve high spatial 

resolutions and fast acquisition times; however, the spectral resolution use to be lower 

compared to the spatial scanning (whiskbroom and pushbroom) cameras. One of the 

main disadvantages of this type of cameras is that they are not suitable for capturing 

moving objects due to the time required to perform the spectral scanning. 

Finally, there is an emerging type of HS cameras that are able to provide 

hyperspectral video, having the lowest acquisition time and allowing acquiring moving 

objects without performing any spatial or spectral scanning. Snapshot cameras 

(Figure 2-7.d) capture the entire scene in a single shot that contains both the spectral 

and spatial information [55]. In the same way as the cameras based on spectral 

scanning, snapshot cameras usually store the HS data in BSQ format. The main 

disadvantage of snapshot cameras is that the spectral and spatial resolutions are much 

lower with respect to the other camera types.  

In conclusion, the HS camera type selected to shape the acquisition system is closely 

related with the application where the system is going to be used.   

 

Figure 2-7: HS camera types and their respective acquisition and storage data 

methods. (a) Whiskbroom camera; (b) Pushbroom camera; (c) HS camera based on 

spectral scanning; (d) Snapshot camera. 
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Figure 2-8: HS data storage structure types. (a) Band sequential (BSQ) format; (b) 

Band-interleaved-by-line (BIL) format; (c) Band-interleaved-by-pixel (BIP) format. 

2.3.2 Hyperspectral imaging processing algorithms 

An extensive literature is available on classification of HS images [56]. Traditionally, 

HSI has been widely employed in the remote sensing field and, for that reason, the 

majority of algorithms developed to classify HS images are related with this field [57]. 

However, more recently, HSI is progressively being used in other fields, such as drug 

analysis [58], [59], food quality inspection [31]–[33], [60] or defense and security [27], 

[61] among many others. That is why the algorithms that were developed targeting 

remote sensing application have been adapted to classify different types of scenes. 

Pixel-wise classification methods assume that each pixel is pure or a mix of pure 

pixels and can be assigned to a certain material based on its spectral information [62]–

[64]. Pixel-wise classification algorithms can be divided in two types: supervised 

classifiers and unsupervised classifiers (also called clustering or segmentation 

algorithms). Furthermore, in the recent years, the use of deep learning (DL) 

approaches to classify HS data has become increasingly common, achieving excellent 

results when compared with traditional machine learning (ML) algorithms [65]. All 

these algorithms have to face two main problems when they are applied to HS data: the 

high dimensionality and the limited size of samples. 

The basis of the supervised classification algorithms relies on assigning to each pixel 

of the HS image one of the previously established classes based on its spectral values. 

In order to perform this assignation, the algorithm must be previously trained 

employing a spectral signature library where each type of signature has been identified 

with a certain class. For this purpose, ML methods based on decision trees, such as 

Random Forest (RF) [66], [67],  neural networks, such us Artificial Neural Networks 

(ANN) [68]–[70], and kernel-based methods have been widely used to classify HS 

images. In particular, there are several types of kernel-based methods in the literature 

[71], where support vector machine (SVM) classifier is the most commonly used 

algorithm. In the HSI field, SVMs provide good performance for classifying this type of 

data when a limited number of training samples is available [71]. Due to its strong 

theoretical foundations, good generalization capabilities, low sensitivity to the problem 

of dimensionality and the ability to find optimal solutions, SVMs are usually selected by 

many researchers over other classification paradigms for classifying HS images [34]. As 

a relevant example, a variant of the SVM classifier, called Fuzzy SVM classifier, was 

employed in the development of an emotion recognition system based on facial 
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expression images, obtaining overall accuracy results of 96.77±0.10% [72]. In the 

medical field, SVMs have been used to detect multiple sclerosis subjects employing 

stationary wavelet entropy to extract features from magnetic resonance images used as 

inputs of the SVM classifier [73]. Furthermore, the same technique combined with a 

directed acyclic graph method has been used to diagnose unilateral hearing loss in 

structural MRI [74], demonstrating that the SVM algorithm is a reliable candidate to 

work with medical images. 

On the other hand, the goal of the unsupervised classifiers is to divide an image into 

a certain number of similar groups (also called clusters), where each group shares 

approximately the same spectral information and provides the correspondent cluster 

centroid [75], [76]. Each cluster centroid represents a spectra corresponding to a 

material in the scene, while the membership functions provide the weights for these 

spectra. Unlike the supervised classifiers, unsupervised methods do not require a 

training process using labeled samples. For that reason, they cannot provide the 

identification of the class that each pixel belong to. They only provide a certain number 

of clusters with no information about the material nature. Although unsupervised 

clustering does not provide any discriminant feature by itself, it could be used to 

delineate the boundaries of the different spectral regions presented in a HS image. ML 

unsupervised algorithms such as K-means algorithm [77], [78] and the Iterative Self-

Organizing Data Analysis (ISODATA) technique [79]–[81] are the most common 

clustering algorithms employed in the literature using HS data [56]. In particular, 

within the unsupervised classification algorithms, hierarchical clustering is a method of 

cluster analysis that seeks to obtain a hierarchy of clusters [82], [83]. Several 

hierarchical clustering algorithms have been employed to classify HS images, such as 

Hierarchical rank-2 non-Negative Matrix Factorization (H2NMF) [84], Hierarchical K-

Means  (HKM) [84], [85] and Hierarchical Spherical K-Means (HSKM) [86]. Some 

works based on HS analysis for medical applications use unsupervised clustering as 

part of the classification algorithm, such as for colon tissue cell classification [87] or 

laryngeal cancer detection [88]. 

In the field of deep learning, these techniques have recently become a hotspot to 

process HS data, being introduced in the field of remote sensing big data analysis. DL 

techniques have been used in many sectors of remote sensing data analysis, such as 

image processing, pixel-wise classification, target detection and also other recent 

challenging tasks of high-level semantic feature extraction and scene understanding 

[65]. As basis, DL generates computational models that are formed by several 

processing layers to learn different representations of data with multiple levels of 

abstraction. DL architectures can discover intricate structures in large datasets 

employing backpropagation algorithms to determine the changes that a machine 

should perform in its internal parameters to compute the representation at each layer 

from the representation in the previous layer [89]. Conventional ML techniques are 

limited in their ability to process original data on their raw form. However, DL methods 

are composed of a set of methods that allows a machine to be fed with raw data and to 

automatically discover the representations required for detection or classification. 

These multiple levels of representation are obtained by composing single but non-

linear modules that modify the representation at one level (starting with the raw input) 

into a representation at a higher, slightly more abstract, level. With the composition of 

enough such transformations, very complex functions can be learned [89].  
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Many DL frameworks have been applied to HS images in the literature. Deep belief 

networks (DBNs) [90] and convolutional neural networks (CNNs) [91], [92]  have been 

employed to process and classify HS remote sensing data, improving the results 

obtained with conventional SVM-based algorithms [93]–[96]. CNNs have been also 

employed to extract high-level spatial features from HS data in a spectral-spatial 

feature extraction algorithm for HS image classification [97]. In the medical field, DL is 

emerging in the recent years as a powerful tool in the field of translational 

bioinformatics, medical imaging, pervasive sensing and medical informatics [98]. As an 

example, deep neural networks (DNNs) and CNNs have been employed to classify 

electrocardiogram signals [99]–[101], detect retinal vessels [102]–[105], classify 

colorectal polyps [106]–[108] and several types of cancer analysis [109]–[113]. On the 

other hand, the use of DL techniques in the medical field related with HSI is quite 

reduced until now. The main reason that can cause this fact is that deep learning 

requires of high amount of data to train the networks and currently there are not such 

high quantity of medical HSI databases available as the capturing process is quite 

expensive and complex. In general, other techniques commonly used in HSI applied to 

remote sensing, such as unmixing or anomaly detection, are not normally used for 

medical HSI mainly due to the spatial resolution of the HS images are quite high due to 

the distance between the camera and the sample it is much more lower in comparison 

with remote sensing applications.  

At this point, it is required to analyze the different studies available in the literature 

where HSI is employed for cancer analysis, potentially providing useful information to 

the operating surgeon in the identification of different types of tissues. 

2.4 Medical hyperspectral imaging for cancer analysis 

In the previous sections, the current devices that surgeons have available to assist 

them during surgical procedures and the problems that must still to be solved have 

been presented. In addition, the basis of the HSI technology and the main algorithms 

employed to process this type of data have been described. In this section, the state-of-

the-art in the use of HSI within the medical field, particularly in the cancer analysis, is 

presented. This imaging modality is a non-invasive sensing technique that has been 

used in medical applications for more than two decades [34], [35]. However, it has 

been in the recent years when medical HSI has started to achieve promising results 

with respect to cancer detection. Figure 2-9 shows the statistics obtained from 

Scopus1, where the number of documents published per year related with the use of 

HSI to study different types of cancer is presented. The exploration was performed 

searching the terms presented in the legend (HS was searched as hyperspectral) in the 

title, abstract and keywords of each document. As it can be seen, the studies that 

mention brain cancer are only a few in the past years and they started to grow from 

2016 mainly due to the research works published by the HELICoiD group, positioning 

the University of Las Palmas de Gran Canaria as the main institution working in this 

field (Figure 2-10). 

                                                        
1
 https://www.scopus.com/  

https://www.scopus.com/


Chapter 2: State-of-the-art in cancer detection using hyperspectral images 

~ 16 ~ 

 

Figure 2-9: Number of publications per year related with the use of HSI for 

cancer analysis. Source: Scopus. 

 
(a) 

 
(b) 

Figure 2-10: Number of publications per author (a) and per institution (b) 

related with the use of HSI for brain cancer analysis. Source: Scopus. 

These studies performed in the literature related with the use of HSI for cancer 

analysis can be categorized depending on the type of tissue sample (ex-vivo, in-vivo), 

the type of organ studied (brain, breast, colon, prostate, etc.) or the type of subject 

(human, animal). The in-vitro studies will not be included in this state-of-the-art as 

they have not been used in this work.  Considering this, a specific taxonomy has been 

established to present the studies performed in this area (Figure 2-11).     
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On the other hand, HSI systems are not standardized, as different technologies were 

used in these studies. As explained in Section 2.1, HS cameras generally use CCD 

sensors for VNIR applications (covering the range between 400 and 1000 nm) while 

InGaAs sensors are used for NIR applications (covering the range between 1000 and 

1700 nm), since the quantum efficiency of the CCD sensors is very low above 1000 nm. 

As will be detailed in Table 2-1, most of the studies work in the VNIR spectral region, 

employing CCD sensors. However, in some studies, the NIR region is also explored, 

requiring the use of InGaAs sensors. Regarding to the illumination systems used in HSI 

applications, they are mainly based on halogen or xenon lamps, and sometimes, optical 

fibers are used for light transmission in order to avoid the high temperatures produced 

by these types of light sources or to concentrate the light into a certain area. The main 

characteristics of the systems employed in each study presented in this literature review 

will be detailed in the summary table shown at the end of this section (Table 2-1). 

 
 

Figure 2-11: Taxonomy of the state-of-the-art of medical HSI for cancer 

detection. 

2.4.1 Ex-vivo cancer HSI analysis 

Several studies have been performed related to the analysis of ex-vivo cancerous 

tissue employing HSI. Due to the complexity of the procedures to capture in-vivo 

samples from human beings, ex-vivo cancer analysis has been performed during many 

years in human tissue. Gastric, breast and head & neck tumors have been mainly 

analyzed. Next, the more relevant studies that can be found in the literature in this area 

are exposed. 

2.4.1.1 Gastric human cancer 

In 2011, Akbari et al. performed a study to identify gastric tumors in human ex-vivo 

tissues employing an HS system capable of capturing images in the range between 1000 

and 2500 nm, obtaining 239 spectral bands [114]. They used an integral filter and the 

normalized cancer index (NDCI) to perform an automatic classification of the tumor 
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tissue determining the boundaries between tumor and normal tissue using the 

pathological analysis to validate their results (Figure 2-12). From their experiments, 

they determined that the spectral regions between 1226 and 1251 nm and 1288 and 

1370 nm are the most suitable ranges for distinguishing between non-cancerous and 

cancerous gastric tissue.  

In 2013, Kiyotoki et al. collected HS images in the spectral range comprised between 

400 and 800 nm from ex-vivo tissue gastric samples to perform a preliminary study of 

gastroduodenal tumors removed by endoscopic resection or surgery from 14 different 

patients [115]. The system was able to obtain HS images composed by 72 spectral bands 

with a spatial dimension of 640 x 480 pixels. Using these images, they were able to 

determine the optimal wavelength that allowed the most accurate classification 

between tumor and normal mucosa using the cutoff point method in the 726 nm 

wavelength. The sensitivity, specificity, and accuracy obtained in the test samples were 

78.8%, 92.5% and 85.6%, respectively. This work was improved in 2015 by the same 

group, increasing the number of patients to 96 and performing the selection of the 

optimal wavelength using the Mahalanobis distance, which in this case was 770 nm 

[116]. Sensitivity, specificity, and accuracy results obtained were 71%, 98%, and 85%, 

respectively, demonstrating that the increment in the number of patients to analyze did 

not decrease the accuracy of the method. Although the classification method employed 

to distinguish the different types of samples was quite basic, the studies revealed 

promising results in the use of HSI as a diagnostic tool for gastric cancer. 

 
(a) 

 

   
 (b) (c) (d) 
 

 
 (e) (f) (g) 

Figure 2-12: Acquisition system employed, cancer detection results using the 

NDCI and integral filter and comparison with pathological results obtained in 

[114]. (a) HS acquisition system setup; (b) RGB representation of the ex-vivo sample; (c) 

Cancer enhanced regions using integral filter in the hyperspectral image (1057–2440 nm), 

the tissues are shown in a blue to red spectrum, where the red regions represent the tumor; 

(d) Cancer enhanced regions using NDCI; (e) Pathological results; (f) Detected tumor using 

integral filter; (g) Detected tumor using NDCI. 

2.4.1.2 Breast human cancer 

Breast cancer has been also studied using ex-vivo samples with the goal of 

automatically delineate the regions of interest (ROI) in the samples and classify the 

tumor and normal tissue samples. In 2013, two studies were published with both 

previous mentioned goals using a HS system capable of obtaining images in the 

spectral range between 380 and 780 nm. The study accomplished by Kim et al. 

performed an automatic ROI detection based on contrast and texture information 
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achieving a true positive rate (TPR) and a true negative rate (TNR) of 97.3% and 95.9%, 

respectively, similar to the results obtained in a manual segmentation (98.7% and 

96.4%) [117]. In the study performed by Pourreza-Shahri et al., authors performed a 

feature extraction (using the Fourier coefficient selection features method) and a 

dimensional reduction (using the Minimum Redundancy Maximum Relevance 

method) to the HS images and then performing an automatic classification (using the 

SVM classifier with the RBF kernel) of the tissue samples, differentiating between 

cancerous and non-cancerous tissue [118]. Sensitivity and specificity results of 98% and 

99%, respectively were obtained, demonstrating that HSI is a powerful imaging 

modality that can be used for the diagnostic of breast cancer.  

2.4.1.3 Head & neck human cancer 

One of the most active research groups in biomedical applications of HSI is led by 

Professor Baowei Fei, who is currently affiliated to the Department of Bioengineering of 

The University of Texas at Dallas. Mainly, their experiments explore cancer diseases in 

animal subjects, although some studies have been carried out using ex-vivo human 

head & neck tumor samples. They usually work using an acquisition system based on 

LCTFs (Liquid Crystal Tunable Filters) in the VNIR spectral range, from 450 to 950 

nm, with a spatial resolution of 1392 x 1040 pixels, capturing 91 spectral bands. 

In 2017, several works were published in this area with the goal of discriminating 

cancerous and non-cancerous tissue. Fei et al. achieved an accurate delineation of the 

boundaries between the normal and cancerous tissue using head & neck ex-vivo 

samples contrasted with the histopathological results (Figure 2-13) [119]. The 

ensemble linear discriminant analysis (LDA) was employed to perform the 

classification, achieving an average accuracy, sensitivity and specificity of 90%, 89% 

and 91%, respectively, using oral cavity samples and an average accuracy, sensitivity 

and specificity of 94%, 94% and 95%, respectively, using thyroid samples. 

Autofluorescence, fluorescence with 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-

yl)amino]-D-glucose (2-NBDG) and proflavine images were also classified and 

compared with the HSI results demonstrating that HSI offered better results over the 

other alternative imaging modalities (an increment of more than 7% of accuracy).  

In addition, Lu et al. increased the number of patients (    ) and accomplished 

an extensive comparison using different machine learning classification approaches, 

reinforcing the conclusion obtained from the other study, where the ensemble LDA 

outperformed other traditional machine learning algorithms [120]. In this study, intra-

patient and inter-patient classifications were performed, as well as different 

classifications using different spectral regions within the VNIR range (450-600 nm, 

605-850 nm, 855-900 nm and 450-900 nm). Finally, they concluded that the use of the 

entire spectral range (from 450 to 900 nm) provides the best accuracy results. 

Finally, one of the few studies performed in the literature regarding to the use of 

deep learning methods to classify HS images with the goal of distinguishing cancerous 

and non-cancerous tissue was performed by Halicek et al. [121]. Authors developed a 

CNN classifier to process the ex-vivo tissues from 50 different patients and compared 

the deep learning method with traditional machine learning approaches, 

demonstrating that CNNs outperforms the traditional classifiers in this case. 
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Figure 2-13: Preliminary results obtained in the tumor margin delineation for 

head & neck cancer [119]. After hyperspectral image acquisitions (top-left), the tissue was 

processed histologically, and tumor margins were outlined on the pathology image (bottom 

right) by a pathologist, which was used to validate the results of the classification (top-right). 

The average spectral curves are shown at the bottom left for each type of tissue, i.e., tumor, 

normal, and tumor with adjacent normal tissue. 

2.4.2 In-vivo cancer HSI analysis 

One of the most important applications of HSI in the field of cancer detection and 

classification is regarding to the intraoperative use of this image modality. Taking into 

account it non-invasive and non-ionizing nature, HSI is suitable to be used as an aid 

guidance tool for the resection of tumors during surgical operations. In this sense, 

several studies have been focused during many years in the application of this 

technology for in-vivo tissue analysis. However, due to the complexity of the surgical 

procedures and the ethical implications regarding to human beings, the majority of the 

HSI studies using in-vivo tumor samples employs animal subjects. Only works related 

with endoscopic systems attached to HSI or spectrograph apparatus that uses in-vivo 

tumor human samples are presented in the literature. In the following sections, some of 

these studies will be presented.    

2.4.2.1 Breast animal cancer 

One of the first and most relevant works performed using HSI to study breast cancer 

was performed in 2007 by Panasyuk et al. [122]. In this work, authors employed a HS 

system based on LCTFs to acquire HS images in the visual spectral range (comprised 

between 450 and 700 nm and composed by 34 bands) during intraoperative surgery of 

60 rats affected by an induced breast cancer. They generated thematic maps, where   

different types of tissue including tumor, blood vessels, muscle, and connective tissue 

were clearly identified and differentiated. Furthermore, a sensitivity of 89% and a 

specificity of 94% for the detection of the residual tumor were obtained and compared 

to the histopathological examination of the tumor bed. One of the lacks of this work 

was the use of LED (light-emitting diode) illumination in the HS acquisition system, 

which produced a non-standard spectral signature due to LED light does not provides a 

broadband and uniform spectrum compared to the halogen of xenon light. 

In addition, in 2014, McCormack et al. accomplished an study where mouse models 

of breast cancer were employed to evaluate the use of in-vivo HSI for microvessel sO2 
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segmentation and classification during surgical procedures, studying also the response 

of the microvessels to different types of treatments [123]. In order to obtain the HS 

images it was employed an acquisition system based on LCTFs and a halogen lamp, 

capturing images in the spectral range between 500 and 600 nm and composed by 26 

bands.  

2.4.2.2 Prostate animal cancer 

Prostate cancer has been also studied by the group of Dr. Fei using in-vivo HS 

images of mice affected by human prostate cancer. In 2012, Fei et al. [124] and Akbari 

et al. [125] employed an HSI system based on LCTFs and xenon illumination to capture 

in-vivo images in the range between 450 and 950 nm of mice affected by human 

prostate tumors. Their results showed a maximum sensitivity of 92.8% and a specificity 

of 96.9% in the classification of malignant and non-malignant regions using a least 

squares support vector machine (LS-SVM) classifier.  

2.4.2.3 Head and neck animal cancer 

Other types of tumors have been also studied and analyzed using HSI, such as those 

of the head and neck cancer. As in the previous section, the same group of Dr. Fei 

performed several works in the analysis of head and neck cancer using in-vivo HS 

images from mice affected by head and neck cancer. All the studies were performed in 

the VNIR range comprised between 450 and 950 nm using the CRI Maestro HS 

acquisition system. In 2014, Lu et al. published several works in this field, where the 

tensor decomposition, PCA and KNN methods were employed to perform a feature 

extraction and automatic classification, achieving a sensitivity of 93.7% and a specificity 

of 91.3% in the discrimination of tumor and normal tissue [126], [127]. Furthermore, 

they accomplished an exhaustive margin delineation of the tumor during the surgical 

procedures performing an in-vivo/in-vitro registration between the in-vivo HS images 

and the histological images to validate the results [128].  

On the other hand, their research has exhaustively analyzed which pre-processing 

techniques are more suitable to compensate the variations of the environmental 

conditions during the acquisition inside an operating theatre [129], [130]. In the work 

published in 2015, a method based on the mRMR (maximal Relevance and Minimal 

Redundancy) algorithm was proposed to address the problem of glare that usually 

appears in the HS images, improving the sensitivity and specificity results to 94.4% and 

98.3%, respectively. In addition, other more sophisticated techniques were studied by 

this group such as the use of a minimum-spanning forest (MSF) algorithm for an 

automatic classification and segmentation of the in-vivo HS images [131] (Figure 

2-14). 



Chapter 2: State-of-the-art in cancer detection using hyperspectral images 

~ 22 ~ 

 

Figure 2-14: Result of the tumor identification using the Minimum-Spanning 

Forest method developed in [131]. (a) RGB image of the original mouse; (b) 

Corresponding gold standard image; (c) Classification result obtained. 

2.4.2.4 Oral human cancer 

A reduced number of studies can be found in the literature using HSI to analyze in-

vivo samples of human subjects. Mainly, the studies are related with the use of 

endoscopic systems attached to HS camera.  

In 2011, Kester et al. developed a real-time snapshot HSI endoscope system based 

on an image mapping technique that is capable of operating at frames rates of 5.2 fps 

(frames per second), obtaining HS cubes of 48 bands in the visual range between 450 

and 650 nm, with a spatial resolution of 100 µm [132]. Using this system, they were 

able to capture in-vivo tissue, resolving a vasculature pattern of the lower lip while 

simultaneously detecting oxy-hemoglobin. Figure 2-15 shows an example of the 

spectral signatures obtained by the system and the developed acquisition system. 

Moreover, in 2011, another study was published by Jayanthi et al. related with the 

use of diffuse reflectance spectroscopy for early detection of malignant changes in the 

oral cavity [133]. The system was able to capture HS information within the visible 

spectral range (from 400 to 700 nm), obtaining 40 different bands. They used PCA to 

dimensionality reduce the images and LDA for the automatic classification of the data. 

They achieved sensitivity and specificity results higher than 95% in the discrimination 

between different lesions, such as normal/healthy, hyperplastic, dysplastic and 

squamous cell carcinoma (SCC) tissues. 

In 2016, laryngeal cancer was investigated by Regeling et al. using a flexible 

endoscopy coupled to an HSI system that was able to obtain HS images composed by 

30 bands in the visual spectral region between 390 and 680 nm [88]. This system was 

employed to obtain in-vivo HS images that had to be registered due to patient‘s 

heartbeat and removed the noise and the specular reflections. Finally, an image pre-

processor method was proposed to solve these issues [134]. The images were registered 

using a rigid image-to-image registration based on normalized cross-correlation (NCC), 

the noise was reduced using the minimum noise fraction (MNF) transformation and 

the glare was detected using a customized method. In addition, the random forest (RF) 

algorithm was applied to distinguish between healthy and cancerous tissue, achieving 

an overall accuracy of 88%. 
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In addition, in the same year, Laffers et al. employed a rigid HS endoscopic system 

to capture HS images (in the spectral range comprised between 390 and 680 nm) of the 

oral cavity or oropharynx from 85 patients [135]. However, in this study they only took 

into consideration 3 patients, one of them used for training the algorithm and the other 

two for validation purposes. The classification results obtained using the RF algorithm 

presented sensitivities of 61% and 43%, and specificity of 100% in the two validation 

patients. These reduced sensitivity values could be mainly produced due to the low 

number of patients involved in the training of the classification algorithm. The inter-

patient variability for the training phase was not correctly addressed in this study.  

 

 
(c) 

 
(a) (b) 

(d)                           (e) 

Figure 2-15: HS image example of the lower lip of a normal human acquired 

with the image mapping spectroscopy (IMS) endoscope developed in [132]. (a) 

RGB representation; (b) Spectral signature of the normal tissue pixel and a vein pixel; (c) 

Clinical setup of the IMS endoscope; (d) Miniature imaging end of the IMS endoscope; (e) 

Fiber optics of the IMS endoscope inserted into the instrument channel.  

2.4.2.5 Colon human cancer 

Following with the HS endoscopic systems, in-vivo colorectal tumors have been also 

studied in the literature. One of the main studies in this field was performed in 2016, 

when Han et al. used a flexible hyperspectral colonoscopy system based on a motorized 

filter wheel, capable of obtaining 27 different bands in the range comprised between 

405 and 665 nm, to discriminate between malignant colorectal tumors and normal 

mucosa in human patients [136] (Figure 2-16). They used a wavelength selection 

algorithm based on the recursive divergence method to identify the most relevant 

wavelengths in the spectral range employed, demonstrating that HSI can be used in-

vivo for outlining the disease region and enhancing the microvascular network on the 

mucosa surface. 

  
(a) (b) 

Figure 2-16: System and preliminary results obtained in [136]. (a) The optical filter 

wheel used in the HSI system; (b) Color image of a malignant colorectal tumor and a graph 

showing the spectral signature of the tumor and normal mucosa in the wavelength range of 

405 to 655 nm. 
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2.4.2.6 Tongue human cancer 

Finally, tongue cancer of in-vivo human samples was studied in 2012 by Liu et al. 

using HSI [137]. The HS system employed was based on an acousto-optic tunable filter 

(AOTF), capturing 81 bands in the VNIR spectral range comprised between 600 and 

1000 nm. They developed a classifier based on the sparse representation (SR) method 

and compared the results obtained using traditional machine learning algorithms such 

as SVM or RVM (Relevance Vector Machine) classifiers. Sensitivity and specificity 

results of 91.3% and 93.7%, respectively, were obtained, increasing the accuracy in 

more than 4% with respect to the other two methods.  

 

Figure 2-17: Delineation of the tongue tumor region in [137]. Expert labeling (left) 

and classifier prediction of tumor regions (right). 

2.4.3 Summary 

Table 2-1 presents a brief summary of the main characteristics of the related works 

previously presented that studied the use of HSI for cancer detection sorted by the year 

of publication.  

2.5 Conclusions 

In this chapter, a brief description of the current intraoperative brain surgical 

guidance tools employed to assist neurosurgeons in the crucial task of tumor resection 

has been presented. The advantages and disadvantages of each guidance method have 

been highlighted, concluding that there is an urgent necessity to find a suitable 

technique that could solve the problems faced by neurosurgeons inside the operating 

theatre. After this discussion, an introduction to the hyperspectral imaging concept 

detailing the current methods available to acquire this type of data has been provided 

as well as a brief description of the main algorithms employed to process HS data. Since 

the target of this thesis is to apply HSI to the detection of brain cancer during surgical 

procedures, an analysis of the current state-of-the-art related with the use of HSI in the 

medical field applied to cancer analysis of in-vivo and ex-vivo tissues has been 

presented. As stated before, only a few works can be found in the literature that study 

in-vivo cancer during surgical procedures in human beings. The main works performed 

in humans are related with ex-vivo tissue samples and the few in-vivo works are mainly 

related with HSI endoscopic systems. As far as we know, in-vivo brain tumors have not 

been studied before using HSI a part from the works performed by the HELICoiD team.   
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Table 2-1: Summary of the state-of-the-art in the use of HSI for cancer analysis 

Ref. Year 

Type 
of 

Cancer 
¥ 

Type of 
Sample 

Spectral 
Range 
(nm) 

Image 
Size 

(pixels) 
#Bands 

Light 
source 

Acq. 
Mode 

Algorithms Goal 
Subject 

* 

[122] 2007 Breast in-vivo 450-700 1024×1528 34 
InGaN 
LEDs 

LCTF 
Custom 

Algorithm  
Classification A 

[132] 2011 Oral in-vivo 450-650 350×350 48 Halogen Snapshot - - H 

[133] 2011 Oral in-vivo 400-700 - 40 Halogen - 
PCA, 
LDA 

Dimensional reduction, 
Classification 

H 

[114] 2011 Gastric ex-vivo 1000-2500 - 239 Halogen  Pushbroom 

Std, 
SVM, 

Integral Method, 
NDCI 

Classification, 
Margin delineation 

H 

[125] 2012 Prostate in-vivo 450-950 1392×1040 251 Xenon LCTF LS-SVM Classification A 

[137] 2012 Tongue in-vivo 600-1000 1392×1040 81 Halogen  AOTF 
SR, 

SVM, RVM  
Classification H 

[124] 2012 Prostate in-vivo 40-950 1392×1040 251 Xenon  LCTF LS-SVM Classification A 

[115] 2013 Gastric ex-vivo 400-800 640×480 72 Halogen  - Cutoff point 
Optimal wavelength 

selection, 
Classification 

H 

[117] 2013 Breast ex-vivo 380-720 - 101 Xenon - Polynomial SVM  

Automatic ROI 
detection based on 

contrast and texture 
information 

H 

[118] 2013 Breast ex-vivo 380-720 - 101 Xenon - 

Fourier 
coefficient 
selection 
features, 
mRMR, 

RBF SVM 

Feature extraction, 
Dimensional reduction, 

Classification 
H 

[123] 2014 Breast in-vivo 500-600 1392×1040 26 Halogen LCTF 
Gabor Filter, 
Expectation 

Maximization 

Microvessel sO2 
segmentation and 

classification 
A 

[126], 
[127] 

2014 H&N in-vivo 450-950 1392×1040 251 Xenon  LCTF 

Tensor 
Decomposition, 

PCA, 
KNN 

Feature extraction,  
Classification 

A 

[128] 2014 H&N in-vivo 450-950 1392×1040 251 Xenon  LCTF 
PCA, 
FFD 

Surgical margin 
delineation and in-

vivo/in-vitro 
registration 

A 

[130] 2015 H&N in-vivo 450-950 1392×1040 226 Xenon  LCTF 
mRMR, 

KNN 

Glare removal, 
Feature extraction, 

Automatic classification 
A 

[129] 2015 H&N in-vivo 450-950 1392×1040 226 Xenon  LCTF 

mRMR, 
RBF SVM, 

Chan-Vase active 
contour method 

Glare removal, 
Feature extraction, 

Automatic classification,  
Active contour 

refinement 

A 

[116] 2015 Gastric ex-vivo 400-800 480×640 81 Halogen  - 
Mahalanobis 

distance, 
Cutoff point 

Optimal wavelength 
selection, 

Classification 
H 

[135] 2016 Oral in-vivo 390-680 - 30 - - RF Classification H 

[88] 
 

2016 Oral in-vivo 390-680 1388×1040 30 Xenon - Customized 
Image filtering 

(honeycomb pattern 
removal) 

H 

[136] 2016 Colon in-vivo 405-665 585×752 27 Xenon 
Filter 
Wheel 

Recursive 
divergence, 

SVM 

Wavelength selection, 
Classification 

H 

[131] 2016 H&N in-vivo 450-950 1392×1040 251 Xenon  LCTF 
SVM, 
MSF 

Classification and 
segmentation 

A 

[134] 2016 Oral in-vivo 390-680 1388×1040 30 Xenon - 
NCC, 
MNF, 

RF 

Image registration  and 
denoising, 

Glare detection, 
Classification 

H 

[121] 2017 H&N ex-vivo 450-950 1392×1040 91 Xenon  LCTF 

CNN, 
SVM, 
KNN, 
LR, 

DTC, 
LDA 

Classification H 

[119] 2017 H&N ex-vivo 450-950 1392×1040 91 Xenon  LCTF Ensemble LDA Classification H 

[120] 2017 H&N ex-vivo 450-950 1392×1040 91 Xenon  LCTF 

LDA, 
QDA, 

Ensemble LDA, 
Linear SVM, 
RBF SVM, 

RF 

Classification H 

* H: Human; A: Animal 
¥  H&N: Head and Neck  
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Chapter 3: Intraoperative hyperspectral 

acquisition and processing system 

3.1 Introduction 

This chapter provides an overview of the hyperspectral imaging instrumentation 

used in order to develop the intraoperative demonstrator for brain cancer detection. 

Furthermore, a detailed description of the complete system is presented. Figure 3-1 

shows the block diagram of the demonstrator where all the parts of the system and their 

interconnections are shown. The acquisition platform is formed by two pushbroom HS 

cameras, covering the spectral range from 400 to 1700 nm, and the illumination system, 

mounted on a scanning platform guided by a high-precision stepper motor. The control 

unit is in charge of managing all the components of the system, while the hardware 

accelerator has the goal of speeding up the developed HS brain cancer detection 

algorithm in order to perform the image processing intraoperatively. The 

electromechanical elements allow the demonstrator‘s operator to focus and obtain the 

image in optimal conditions. Finally, the user interface was developed in a user-friendly 

way, facilitating the use of the system by non-expert users. Each of these parts will be 

described in detail in the following sections. 

 

Figure 3-1: Block diagram of the intraoperative demonstrator. 
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The work related with the integration of the hardware accelerator with the 

intraoperative demonstrator was performed in collaboration with the research group of 

Prof. Eduardo Juárez at the Centre of Software Technologies and Multimedia Systems 

(CITSEM) of the Universidad Politécnica de Madrid (UPM). 

3.2 Development of the intraoperative demonstrator  

3.2.1 Acquisition platform 

The acquisition platform locates all the elements required to capture the HS images. 

Two HS cameras that cover the spectral range from 400 to 1700 nm are employed. 

Using these two cameras, two different HS cubes are generated: one in the VNIR 

spectral range (from 400 to 1000 nm) and another one in the NIR spectral range (from 

900 to 1700 nm). Four different elements compose the acquisition platform: the HS 

cameras, the scanning platform, the illumination system, and the positioning camera. 

Figure 3-2 summarizes all the elements that are placed in the acquisition platform of 

the demonstrator. 

 

Figure 3-2: The intraoperative demonstrator acquisition platform. (a) and (b) 

VNIR and NIR HS cameras mounted on the scanning platform; (c), (d), and (e) QTH light 

source connected to the fiber optic system for the light transmission to obtain cold light 

emission in the scanning platform; (f) and (g) Stepper motor coupled to the spindle and 

connected to the stepper-motor controller to perform the linear movement of the cameras; 

(h) Positioning of the RGB camera used to identify the position of the cameras‘ FOV; (i) The 

Up&Down system used to focus the HS cameras; (j) and (k) Tilt and manual panning 

systems employed to correctly orientate the scanning platform. 

3.2.1.1 Hyperspectral cameras 

The HS cameras selected for the acquisition platform of the system are the 

Hyperspec® VNIR A-Series (Figure 3-2.a) and the Hyperspec® NIR 100/U (Figure 

3-2.b) cameras, manufactured by Headwall Photonics Inc. (Fitchburg, MA, USA). 

These HS cameras are based on a line-scanning technique. The camera sensor is a two-

dimensional detector array in which one of the spatial dimensions and the complete 

spectral dimension of the scene are captured in one single shot (called a frame). The 
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second spatial dimension is obtained by shifting the camera‘s field of view relative to 

the scene by means of a linear motion system. These cameras offer the best 

compromise between spectral and spatial resolution and acquisition time. The spectral 

range covered by both cameras is between 400 and 1700 nm (VNIR and NIR). This 

range has been selected with the aim of finding the most relevant spectral regions 

where the tumor and normal brain tissues can be distinguished using machine learning 

algorithms. The main characteristics of the selected cameras are as follows: 

 The Hyperspec® VNIR A-Series model covers spectral range from 400 to 1000 nm. 

It has a dispersion per pixel of 0.74 nm and a spectral resolution of 2–3 nm (with a 

25-μm slit), and is able to capture 826 spectral bands and 1004 spatial pixels. This 

device integrates a silicon CCD detector array (Adimec 1000-m, Adimec Electronic 

Imaging, Inc., Woburn, MA, USA) with a minimum frame rate of 90 fps. This 

sensor is a monochromatic camera connected to the control unit using a PIXCI® 

Camera Link Interface (EPIX, Inc., Buffalo Grove, IL), which provides a data 

transmission rate up to 255 MB/s. The lens used in this camera is a Xenoplan 1.4 

(Schneider Optics, Hauppauge, NY, USA) with a focal length of 22.5 mm and a 

broadband coating for the spectral range of 400 to 1000 nm. 

 The Hyperspec® NIR 100/U model covers the spectral range from 900 to 1700 nm. 

It has a dispersion per pixel of 4.8 nm and a spectral resolution of 5 nm (with a 25-

μm slit), being able to capture 172 spectral channels and 320 spatial pixels. This 

system incorporates an indium gallium arsenide (InGaAs) detector array (Xeneth 

XEVA 5052, Xenics nv, Leuven, Belgium), which provides a fast response, high 

quantum efficiency, and low dark current for the sensor area. This system has a 

frame rate of up to 100 fps. This camera is connected to the control unit by a USB 

2.0 interface with a transfer rate up to 60 MB/s. The lens used with this camera is a 

Kowa LM25HC-SW 1.4 (Kowa Optimed Deutschland GmbH, Düsseldorf, Germany) 

with 25 mm of focal length and a broadband coating for the spectral range of 800–

2000 nm. 

3.2.1.2 Illumination system 

HS cameras require strong and precise illumination of the scene to be captured in 

order to avoid external interferences produced by the environmental illumination 

where the capture is being performed. The illumination system used in this 

demonstrator is based on a quartz tungsten halogen (QTH) lamp of 150 W with a 

broadband emission between 400 and 2200 nm. This type of lamp is suitable for HS 

applications due to the high homogeneity of its spectrum across the entire spectral 

range [138]. The light source where the lamp is installed is a TechniQuip's Model 21 DC 

source light (TechniQuip, Pleasanton, CA, USA) connected to an optical fiber that 

transmits the light to a cold light emitter, ending in double glass isolation with an air 

chamber in the middle. Using this cold light system, the high temperature produced by 

the QTH lamp is isolated from the brain surface, since a high temperature irradiating 

over the brain surface can cause damage and even premature cell death [139]. Figure 

3-2.c shows the light source placed in the back of the system connected to the optical 

fiber (Figure 3-2.d) that transmits the light to the cold light emitter located in the 

scanning platform (Figure 3-2.e).  

Although the illumination system employed in this demonstrator is able to avoid the 

interference of environmental illumination, HSI requires calibration of the raw images 
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to be performed for correct processing of the data. In the calibration process, the 

significant signal variations caused by the non-uniform illumination over the surface of 

the captured scene are corrected. The acquired raw image is calibrated using white and 

dark reference images. These reference images are acquired by the system with the 

VNIR and NIR cameras separately, but in the same illumination conditions inside the 

operating theatre before the start of the operation. A white reference image is acquired 

from a Spectralon® tile (SphereOptics GmbH, Herrsching, Germany), a type of material 

that reflects the 99% of the incoming radiation in the full spectral range considered in 

this work. This white reference is placed at the same location where the patient‘s head 

will be placed during the surgery, thus taking into account all the real light 

contributions. The dark reference image is obtained by keeping the camera shutter 

closed and is used to avoid the dark currents produced by the camera sensor. The HS-

calibrated image is calculated by Equation (1), where   is the calibrated image,   is the 

raw image, and   and   are the white and dark reference images, respectively: 

      
   

   
 (1) 

Figure 3-3.a shows the white reference tile spectrum obtained with the VNIR 

camera, while Figure 3-3.b and c respectively present raw and calibrated spectrum 

examples of normal brain tissue pixels. In Figure 3-3.d the representation of the white 

reference tile spectrum obtained with the NIR camera can be seen, and in Figure 3-3.e 

and Figure 3-3.f, the raw and calibrated spectra of a normal brain tissue pixel are 

shown. Based on the repeatability experiments performed with the system and taking 

into account that the white reference tile is used only a few minutes for the calibration, 

through measurements, it is confirmed that the spectrum of the certified white 

reference tile does not show perceptible changes over time. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 3-3: Calibration process of a certain pixel of the VNIR and NIR cameras. 

(a) The VNIR white reference spectrum; (b) and (c) The VNIR raw and calibrated spectra of 

a pixel of normal brain tissue; (d) The NIR white reference spectrum; (e and f) The NIR raw 

and calibrated spectra of a pixel of normal brain tissue. 
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3.2.1.3 Scanning platform 

Commonly, in the HS found in laboratories based on pushbroom cameras, the 

camera is usually fixed and the sample to be captured is moved, although some few 

examples can be found of moving cameras [140]. In brain tumor applications, it is not 

possible to move the brain of the patient to perform the capture; instead, the HS 

cameras (Figure 3-2.a and Figure 3-2.b) are installed in a scanning platform 

together with a cold light emitter (Figure 3-2.e). The scanning platform provides the 

necessary movement for the pushbroom scanning. This scanning platform is composed 

of a spindle and a stepper motor, called the BiSlide® motor-driven assembly (Velmex, 

Inc. Bloomfield, NY, USA, Figure 3-2.f). The spindle has a size of 1 m and allows the 

cameras to capture a scene of a maximum size of 230 mm in the X-axis. The step 

resolution of the scanning platform is 6.17 µm. The stepper motor is managed by a 

Velmex VXM® stepping motor controller (Velmex, Inc. Bloomfield, NY, USA, Figure 

3-2.g). This motor controller is connected to the control unit via a serial protocol and 

its programming is accomplished through a Recommended Standard 232 (RS-232) 

protocol. 

3.2.1.4 Positioning camera 

The positioning camera is installed in the acquisition platform to visualize the area 

that will be captured by the HS cameras. Since every HS camera sensor captures only 

one spatial line of the scene, it is not possible to determine the exact position of the 

current pushbroom frame over the brain. For this reason, the inclusion of an additional 

standard RGB camera in the acquisition platform was required, correctly aligned with 

the FOV of the HS cameras, in order to identify the area of the brain surface to be 

captured. However, unlike the HS cameras, this positioning camera is placed in a fixed 

position. This camera permits the user to visualize the complete area that is going to be 

captured by the cameras, allowing the system to be easily positioned in the correct place. 

Figure 3-2.h shows the positioning camera placed in the acquisition platform below 

the scanning platform. 

3.2.2 Electromechanical elements 

Three different electromechanical elements were installed in the HS acquisition 

system. These elements provide several degrees of freedom to the system, which are 

required to focus and orientate the cameras in a convenient way for obtaining high 

quality images. The Up&Down system (Figure 3-2.i) allows the movement of the 

acquisition platform in the Y-axis to focus the camera. Keeping the HS images well 

focused is fundamental for obtaining good quality spectral signatures. Effectively, the 

spectral signature of each pixel is distorted in the case they are unfocused. The focus of 

the system is performed by looking an X-Lambda image (all the bands of the captured 

line in a spatial 2D image) captured by the sensor, where the lambda is the wavelength. 

The focusing distance between the exposed brain tissue and the lens of the cameras is 

40 cm. This distance is determined by the distribution of the HS cameras in the scanning 

platform. The FOV of both cameras is oriented and aligned to the beam of the cold light 

emitter to obtain the highest reflectance value in the sensor. Furthermore, this distance is 

determined by the minimum security distance (30 cm) that must exist between the 

exposed brain and the nearest element of the demonstrator (in this case, the cold light 

emitter). The Up&Down system is composed of a 24-VDC motor coupled to a spindle, 
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allowing a displacement of ±7.75 cm. On the other hand, the tilt system (Figure 3-2.j) 

is composed of a 12-VDC linear actuator that permits the rotation of the scanning 

platform 40° forward and backward. Finally, the manual panning system (Figure 

3-2.k) is employed to manually rotate (up to 45° to the left and 45° to the right) the 

scanning platform, using an aluminum plate. 

3.2.3 Control unit  

The control unit (CU) is responsible for managing all the subsystems that comprise 

the demonstrator. This CU is a computer based on an Intel® Core™ i7-4770k 3.5 GHz 

quad-core processor, with 8 GB of random access memory (RAM) and a high-capacity 

512 GB solid-state drive with write speeds exceeding 500 MB/s. Specific software was 

developed to manage and integrate the different elements that conform the acquisition 

platform, allowing the user to perform the HS image acquisition in an easy and effective 

way. Furthermore, the CU is in charge of executing the HS brain cancer detection 

algorithm together with the hardware accelerator in order to finally present the tumor 

boundary prediction. 

3.2.4 Hyperspectral image acquisition software 

Customized software for image acquisition was developed due to the need to 

automate and accelerate the capture of both HS cameras of the system. The 

simplification of the acquisition procedure ensures easy interaction of the user with the 

system as well as reduced time needed to capture the HS images during neurosurgical 

procedures.  

To develop this software, three different software development kits (SDKs) were 

integrated, belonging to the two HS cameras and the stepper motor controller. Figure 

3-4.a shows the HS image acquisition software flow diagram for the capturing 

procedure. Firstly, after running the program, the scanning platform is initialized, 

detecting and establishing the absolute zero of the motor position. Then, the platform is 

positioned at the center of the scanning area. Taking into account the x-size value of the 

capturing area established by the user through the graphical user interface (GUI), the 

scanning platform is moved to the initial position. The VNIR capturing process is 

performed starting from the right to the left of the platform with the stepper motor 

speed fixed to 3 mm/s. This speed is calculated according to the pixel size (0.1287 mm 

and 0.48 mm for the VNIR and NIR cameras, respectively) and the frame rate of the 

camera (90 fps and 100 fps for the VNIR and NIR cameras, respectively). When the 

VNIR capture is done, the stepper motor stops at the final position, waits a few 

milliseconds to stabilize the system structure, and fixes the speed to 5 mm/s. Then, the 

NIR capturing process begins. This capture is performed starting from the left to the 

right of the platform. After that, the stepper motor moves the scanning platform to the 

central position. Then, the synthetic RGB images of both HS cubes are generated by 

selecting three bands that correspond with red (708.97 nm), green (539.44 nm), and 

blue (479.06 nm) colors for the VNIR image, and three bands of the NIR cube to 

generate a false color RGB image (red: 1094.89 nm, green: 1247.44 nm and blue: 

1595.45 nm). These bands are selected to maintain the compatibility with the original 

software (Hyperspec® III software, Headwall Photonics Inc., Fitchburg, MA, USA) 

provided by the camera manufacturer. Using this technique for the acquisition process, 

a speedup of 3× with respect to the original software is achieved. The maximum image 
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size provided by the system is 1004 × 1787 pixels (129 × 230 mm) for the VNIR image, 

and 320 × 479 pixels (153 × 230 mm) for the NIR image, with spatial resolutions of 

128.7 µm and 480 µm, respectively. 

Figure 3-4.b shows the acquisition system being used during a neurosurgical 

operation and the RGB synthetic images of the captured HS cubes (VNIR and NIR) 

where their image sizes and relative spatial resolutions can be seen. The time employed 

by the system to obtain the maximum size image using the manufacturer‘s software is 

~240 s for the VNIR image and ~140 s for the NIR image. However, employing the 

acquisition software developed in this work, the acquisition time for the maximum image 

size is reduced to ~80 s and ~40 s for the VNIR and NIR cameras, respectively. 

  
(a) (b) 

Figure 3-4: HS image acquisition interface. (a) HS image acquisition software flow 

diagram; (b) HS image acquisition user interface (and the RGB representations of each HS 

cube) being used during a neurosurgical intervention at the University Hospital Doctor 

Negrin of Las Palmas de Gran Canaria (Spain). 

3.2.5 Hardware accelerator  

Due to the high computational cost of the developed HS brain cancer detection 

algorithm and the large amount of data generated by the HS cameras, it is necessary to 

use a hardware accelerator (HA) where the most time-consuming parts of the algorithm 

are implemented. Therefore, the algorithm must be highly parallelized for processing to 

be completed during neurosurgical operations.  

The HA selected for this purpose is the Kalray massively parallel processor array 

(MPPA®) EMB01 board (Kalray S.A., Montbonnot Saint Martin, France) with a 

multiple instruction, multiple data (MIMD) many-core processor [141]. This 

accelerator is focused on computationally-intensive low-power embedded applications. 

The MPPA® EMB01 processing performance reaches 230 GFlops, which, for the 5-W 

power consumption reported, turns into 46 GFlops/W, a much higher figure compared 

to other kinds of high-performance platforms. The MPPA® EMB01 board contains a 

standard host ×86 ComExpress module working as an embedded computer, and a 

carrier board containing the MPPA-256 many-core chip. Figure 3-5.a shows the 

MPPA® board (in the center of the image) connected to a preliminary environment 
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developed to execute the hardware accelerated part of the algorithm. The host module 

side of the board (Figure 3-5.b) is composed of an AMD G-T40E Dual Core Processor 

with an integrated GPU (Graphics Processor Unit) running a CentOS 7 GNU/Linux 

operative system (OS) instance with 4 GB of RAM, 1 peripheral component 

interconnect express (PCIe) Gen2×2 for communication with the MPPA®-256 many-

core chip, and a 16-GB solid-state drive (SSD) as a system disk. The carrier board can 

be seen in Figure 3-5.c. It features an MPPA®-256 many-core processor (under the 

fan). It also contains 4 GB of RAM and 64 MB of flash memory plus the host PCIe 

Gen2×2 port to communicate with the dual core processor. 

 
(a) 

 
(b) 

 
(c) 

Figure 3-5: The Kalray MPPA® EMB01 Platform. (a) Developer environment; (b) 

EMB01 top view where the host module is located; (c) EMB01 bottom view where the carrier 

board is placed. 

The Kalray MPPA-256 is a single-chip many-core processor that assembles 256 user 

cores distributed in 16 clusters running at 400 MHz. This chip comprises 256 user 

cores—32-bit very long instruction word (VLIW) processors with floating point units—

distributed in several computing clusters. Additionally, this platform contains quad-

core input/output (I/O) subsystems to manage the communications with the clusters. A 

network-on-a-chip (NoC) manages the synchronization and communications among 

the compute clusters and the I/O subsystem. Each cluster gathers 2 MB of memory—

which is shared among the 16 cores—as well as a resource management (RM) core 

aimed at running the cluster operating system (NodeOS) and managing events and 

interrupts, and a direct memory access (DMA) module to transfer data from the shared 

memory to the NoC and vice versa. This architecture presents two main advantages: 

first, the system parallelization complexity is maintained within reasonable limits as 

the MPPA® includes mechanisms such as POSIX (Portable Operating System 

Interface), OpenMP, and OpenCL; and secondly, in comparison with other 

architectures like GPUs or FPGAs (Field Programmable Gate Arrays), the MPPA® 

platform leads in terms of energy efficiency [142]. 

3.3 Repeatability analysis of the HS acquisition system 

The developed HS acquisition system was tested by performing two different types 

of repeatability experiments. The goal of this study was to evaluate the possible sources 

of systematic errors in the acquisition system and to verify the repeatability of the 

spectra when images of the same scene were obtained. This section summarizes the 

procedure and the results acquired in the spatial and spectral repeatability tests 

performed using three different pairs of HS cubes obtained with the previously 

introduced system. 
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3.3.1 Repeatability dataset 

Three different scenes were captured twice and consecutively in the same 

environmental conditions to perform the repeatability experiments. In total, three pairs 

of HS cubes were obtained: a white reference tile employed to calibrate the system, a 

chessboard pattern and a book cover fragment with high spatial and spectral entropy 

(image with high amount of information). Figure 3-6 shows the reconstructed RGB 

representations of these HS cubes. The white reference tile (Figure 3-6.a) and the 

chessboard pattern (Figure 3-6.b) are simple and geometrically uniform. These 

images were suitable to identify any relevant difference or geometric distortion between 

each pair of images. The book cover fragment (Figure 3-6.c) was selected due to the 

multiple internal reflections and changes in the reflected light path because of 

intermediate refractions. 

   
(a) (b) (c) 

Figure 3-6: HS images of the repeatability dataset. (a) White reference tile; (b) 

Chessboard pattern; (c) Book cover fragment. 

3.3.2 Repeatability metrics 

The motivation for performing these experiments was to quantify the repeatability of 

the acquisition system, which enables the analyst to assess the a priori feasibility of 

performing ―correct‖ regression or classification model for a given target. If the 

repeatability error is high across all the spectral bands, any statistical modeling will be 

prone to spurious results [143]. 

In Figure 3-7, the scatterplots of an example section of 200×200 pixels obtained 

from the two HS cubes of the same target are shown. The selected areas have been 

surrounded using a red box. In the scatterplot, the voxel values of each HS cube section 

pair are represented (more than 33 million of voxel pairs). Ideally, this scatterplot 

should be a straight line, indicating that all the correspondent voxel value pairs contain 

the same exact information. In this case, the repeatability of the system will be optimal. 

However, in the real world, the scatterplot will be expanded depending on both the 

repeatability qualities of the system and the complexity and contrast of the captured 

scene. In this sense, Figure 3-7.b show the scatterplot of the white reference tile (a 

homogeneous scene), where it is possible to observe that the system offers a low 

variability in the voxel values from both HS cubes. Nevertheless, when the scene 

contrast increases (Figure 3-7.c), the scatterplot is highly scattered (Figure 3-7.d). A 

small variation in the scene position can produce a high variation in the voxel values 

due to the high contrast of the chessboard pattern borders. In the scatterplot of the 

book cover fragment (Figure 3-7.f), the expansion is lower than the chessboard 

pattern due to the scene contrast is lower. This last one is a more realistic example. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 3-7: HS images of the repeatability dataset and their correspondent 

scatterplot of the voxel values of an example section of 200x200 pixels obtained 

from two HS cubes of the same scene. (a) and (b) White reference tile; (c) and (d) 

Chessboard pattern; (e) and (f) Book cover fragment. 

The measures and protocols proposed in [143] were employed for this experiments. 

In [143], the spatial repeatability is defined as the differences between the pixel values 

of the respective spectral layers in two HS cubes from the same scene, while the 

spectral repeatability is defined as the differences between the spectral curves of their 

respective voxels (value of a pixel in a certain wavelength). The repeatability error (RE) 

is computed as the root mean square (   ) of the differences between two vectors 

(   ). The ideal value of RE is zero, but in practice RE is always higher than zero. In 
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this sense, this metric can be modified to represent the noise-to-signal ratio (N/S) or its 

inverse, signal-to-noise ratio (S/N), being zero and infinite their ideal values. These 

metrics are defined in the Equations (2) and (3), respectively. Furthermore, another 

metric employed to measure the repeatability of the system is the absolute relative 

difference percentage (RD) that is defined in Equation (4). In this metric, the relation 

between the absolute difference and the mean values of the two vectors is computed. In 

this case, the lower RD, the better the repeatability of the system will be. S/N and RD 

metrics were employed to measure the spectral and spatial repeatability of the system 

by using plot charts, while N/S and RD were employed to represent graphically the 

spectral repeatability in a certain band. 

    
        

         
 (2) 

    
        

         
 (3) 

      
              

[               ]  
 (4) 

3.3.3 Spectral repeatability 

Spectral repeatability considers a spatial-slice as a vector by fixing the wavelengths 

(λ) and calculating the previously defined metrics. Several HS cubes were created using 

a pushbroom technique, whereby the complete HS image of the target was generated by 

joining multiple contiguous non-overlapped image strips (line scans). During each line 

scan, the CCD sensor acquired a multi-layer slice of the HS cube, where each layer 

belonged to a predetermined spectral band. Each column of the CCD sensor acquired 

the spectrum of one pixel and each row (CCD bins rows) contained one spectral band of 

the HS cube slice. In this sense, it is possible to distinguish between spectral 

repeatability along the line scans and along the CCD bins rows of the HS cube. Figure 

3-8 shows an example of how the HS cube is generated using a pushbroom technique. 

The spectral repeatability experiments allow measuring possible errors produced 

due to the vibrations of the acquisition system, the interline scanning errors or errors 

produced due to differential responses of the CCD bins. These are the most common 

sources of errors in pushbroom HS systems. Figure 3-9 shows the spectral 

repeatability results of S/N and RD along the line scans for the three different pairs of 

HS images. These curves assess the stability of the repeatability indexes from line scan 

to line scan, as well as detecting the location of possible outlier voxels. As it can be seen 

in the results, the average of the S/N index decreases when the complexity of the 

captured scene increases. In the case of the RDmean metric, the mean value of each line 

scan was calculated and it increases when the complexity of the image increases. 

Figure 3-9.a shows the results obtained for the white reference image, where it is 

possible to observe that when the system captures a spatially homogeneous image, the 

spectral repeatability along the line scans is stable and minimal. However, in the case of 

the results obtained for the chessboard pattern image, the peaks obtained in the plot 

reveal that the repeatability errors are mainly produced in the borders of the image 

pattern (Figure 3-9.b). In the case of the book cover image (Figure 3-9.c) the error is 

spread in all the line scans and it is mainly produced due to the reflections of the light 

on the surface and the movement of the system. The worst S/N value is obtained for the 

chessboard pattern image, which can be caused by the abrupt changes in the pattern 
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due to the motion of the pushbroom sensor across the different scanlines. However, the 

average RDmean metric is lower than the value obtained for the book cover image. 

Figure 3-10 presents the spectral repeatability results along the CCD bins for the 

three pairs of HS images. The dome-shaped curves obtained in the S/N and RDmean 

metrics of the white reference image (Figure 3-10.a) show that the spectral 

repeatability was better in the center of the CCD array than in the borders. This is 

mainly caused due to optical aberrations produced at the ends of the sensor and to 

inhomogeneous illumination across the X pushbroom scan direction. Figure 3-10.b 

and Figure 3-10.c show the results obtained for the chessboard pattern and the book 

cover, respectively. In this case, the worst S/N value is obtained for the chessboard 

pattern image. However, the average RDmean metric is lower than the one obtained for 

the book cover image. 

Finally, Figure 3-11 shows the spatial representation of the spectral repeatability 

indexes of N/S and RDmean of the white reference tile (Figure 3-11.a), the chessboard 

pattern (Figure 3-11.b) and the book cover fragment (Figure 3-11.c) HS cube pairs at 

a certain wavelength (λ = 690.78 nm). This λ value was selected as an example to 

represent the error in a centered wavelength of the spectrum. The repeatability indexes 

are depicted in false color images. The scales of the false colors on the right side of each 

image determine the values and ranges of the corresponding repeatability index. In 

these false color images, it is possible to identify directly by visual inspection the 

regions of the images where the repeatability of the system is extremely high or low. In 

this sense, the repeatability is quite low in the areas of the images with higher spatial 

entropy. These high-entropy areas cannot be accurately reproduced due to the fine 

resolution of the spatial scanning required to obtain the HS cube. For example, in the 

chessboard pattern image (Figure 3-11.b) the boundaries of the pattern have a low 

repeatability while in the book cover image (Figure 3-11.c) low repeatability areas are 

also in the borders of the letters and the drawing as well as in the relief produced by 

plasticizing the book cover. The spectral repeatability is a function of the ambient light 

and the nature of the materials presented in the scene [143]. 

 

Figure 3-8: Pushbroom technique block diagram example. 
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(a) 

 
(b) 

 
(c) 

Figure 3-9: Spectral repeatability indexes in line scans of the three different HS 

cube pairs. (a) White reference tile; (b) Chessboard pattern; (c) Book cover fragment. 
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(a) 

 
(b) 

 
(c) 

Figure 3-10: Spectral repeatability indexes in CCD bins of the three different HS 

cube pairs. (a) White reference tile; (b) Chessboard pattern; (c) Book cover fragment. 
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(a) 

 
(b) 

 
(c) 

Figure 3-11: Spatial representation of the spectral repeatability indexes of N/S 

and RDmean of the three different HS cube pairs at a certain wavelength (λ = 

690.78 nm). (a) White reference tile; (b) Chessboard pattern; (c) Book cover fragment. 
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3.3.4 Spatial repeatability 

The spatial repeatability measures the differences between pixel values at a certain 

wavelength in HS cubes of the same scene. Figure 3-12 shows the S/N and RDmean 

metrics for each one of the HS cube pairs to measure the spatial repeatability of the HS 

acquisition system. As it can be seen in the results, the spatial repeatability of the 

system was better in the center wavelengths and worse towards the first and the last 

spectral bands. This is produced because in the shorter wavelengths the photons have 

higher energy than in the longer ones. Consequently, they are absorbed closely to the 

CCD sensor surface and not by the active part of the detector [143]. The oscillations 

presented in the S/N plot of the book cover fragment (Figure 3-12.c) are produced due 

to the presence of multiple materials that have low and high reflectance values in 

different wavelengths. Taking into account the results of these experiments, the optimal 

spectral range where the system can operate efficiently is comprised between 450 and 

900 nm approximately. For this reason, during the pre-processing of the HS cubes, the 

reflectance values outside of this range were avoided. 

 
(a) 

 
(b) 

 
(c) 

Figure 3-12: Spatial repeatability indexes of the three different HS cube pairs. 

(a) White reference tile; (b) Chessboard pattern; (c) Book cover fragment. 
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3.4 Conclusions 

In this chapter, the detailed description of the work carried out to develop the 

intraoperative HS demonstrator has been presented. This intraoperative system is 

capable of acquiring HS images during neurosurgical procedures, allowing capturing 

HS images in the spectral range between 400 and 1700 nm. Two HS cubes can be 

obtained, one in the VNIR range (400 to 1000 nm) formed by 826 spectral bands and 

high spatial resolution (1004 × 1787 pixels) and one in the NIR range (900 to 1700 nm) 

formed by 172 spectral bands and low spatial resolution (320 × 479 pixels). These two 

spectral ranges were selected in order to study the most relevant spectral zones where 

the tumor and normal brain tissues can be distinguished by using HS classification 

algorithms. 

In the following chapters, the work performed is based on the information obtained 

from the VNIR camera. Only the VNIR HS images were employed to generate the gold 

standard for the training of the HS classification algorithms and validate their results. 

Due to the low spatial resolution of the NIR camera, it has not been possible to perform 

a reliable labeling of the NIR HS cubes. Although some preliminary analysis of the NIR 

images performed by the research team [144] during the project execution reveal that 

the use of the NIR spectral range could help in the identification of blood vessels and 

extravasated blood, NIR images alone have not proven to be relevant for the goal of this 

thesis. Further experiments must be carried out performing a fusion of both types of 

HS images (VNIR and NIR) in order to further investigate if the NIR information could 

help to a more accurate classification of the boundaries between the tumor tissue and 

the surrounding hypervascularized normal tissue. 

In addition, repeatability experiments where the spectral and spatial characteristics 

of the obtained HS cubes using the intraoperative HS acquisition system were 

performed. This study assessed the quality of the obtained data and the performance of 

the acquisition system. In addition, this repeatability analysis revealed that the suitable 

spectral range where the system can operate more efficiently is comprised between 450 

and 900 nm.  
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Chapter 4: In-vivo hyperspectral 

human brain image database  

4.1 Introduction 

Using the intraoperative HS acquisition system, an in-vivo HS human brain image 

database was created. The HS cubes were obtained in three different data campaigns 

that were performed during the course of the HELICoiD project. The first data 

campaign was carried out at the University Hospital Doctor Negrin of Las Palmas de 

Gran Canaria (Spain) from March 22th of 2015 until November 18th of 2015. In this data 

campaign, a total of 22 operations were attended, obtaining more than 50 HS images of 

in-vivo human brain tissue. The second data campaign was performed at the University 

Hospital of Southampton (United Kingdom) from March 7th of 2016 until June 6th of 

2016. In this second data campaign, a total of 9 operations were attended, capturing 20 

HS images of in-vivo human brain. Finally, the third data campaign was accomplished 

again at the University Hospital Doctor Negrin from October 11th of 2016 until 

December 28th of 2016. In this final data campaign, a total of 5 operations were 

attended, obtaining 11 HS images. In summary, during the course of the project, a total 

of 36 patients have been included in the research, with a dataset consisting in 80 HS 

cubes. This dataset involves several types of in-vivo tumors, i.e.: primary tumors 

diagnosed with different grades and secondary tumors belonging to different organ 

metastasis. 

This section provides an overview of the procedure carried out to obtain the HS 

images of the human brain surface that were stored in the in-vivo HS human brain 

image database. Furthermore, the process to label the samples as tumor or normal 

tissue for the supervised algorithm development is described. Finally, a detailed 

description of the entire database employed in this thesis is presented. 

The work presented in this chapter has been carried out in a very close collaboration 

with the research group of Dr. Adam Szolna and Mr. Jesús Morera at the Department 

of Neurosurgery of the University Hospital Doctor Negrin of Las Palmas de Gran 

Canaria and also with the research group of Dr. Diederik Bulters at the Wessex 

Neurological Centre of the University Hospital Southampton. 
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4.2 Participants 

In this study, all adult patients (18 years old and above) undergoing craniotomy for 

resection of intra-axial brain tumors at both participating sites were approached for 

inclusion in the study.  The University Hospital of Southampton (UHS), UK, and the 

University Hospital Doctor Negrin (UHDRN) of Las Palmas de Gran Canaria, Spain, 

were the participant sites. Patients with both primary and secondary tumors were 

included in the database. Patients that underwent resection of meningioma, where the 

dura was resected, were also included whenever it was possible to properly capture the 

exposed normal brain. The study protocol and consent procedures were approved by 

the Comité Ético de Investigación Clínica-Comité de Ética en la Investigación 

(CEIC/CEI) for the University Hospital Doctor Negrin and the National Research 

Ethics Service (NRES) Committee South Central - Oxford C for the University Hospital 

of Southampton. Written informed consent was obtained from all the subjects.  

4.3 Intraoperative HS image acquisition procedure 

This section provides an overview of the procedure carried out to obtain the HS in-

vivo images from the human brain surface that were stored in the database (Figure 

4-1). Furthermore, the process of labeling the samples as tumor tissue or normal brain 

tissue is described. The procedure followed to acquire and label the spectral signatures 

of the in-vivo brain surface is based on five steps: patient preparation, HS image 

acquisition, tissue resection, neuropathology evaluation and sample labeling. 

4.3.1 Patient preparation 

Before the operation, a computed tomography and a magnetic resonance imaging of 

the patient‘s head compatible with IGS are performed. These images are uploaded onto 

the IGS system before the operation started. Then, the patient is placed in a supine 

position, under general anesthesia and is registered to the IGS system. A scalp incision 

is made and a burr hole/s drill using a high-speed drill. A craniotome is then inserted 

into the burr hole/s and a bone flap cut out (craniotomy). The dura is then cut with a 

knife (durotomy) to expose the brain surface. 

4.3.2 HS image acquisition 

 HS images are captured after durotomy, before the arachnoid and pia are breached 

in cases where the tumor extended to the brain surface. Sterilized rubber ring markers 

were placed to identify the position of the tumor and the normal brain (Figure 4-1.d), 

employing the IGS system pointer to establish the exact location of the markers over 

the brain. This pointer provides information about the position of the markers with 

respect to an MRI or CT, which are performed prior to the surgical procedure. 

Figure 4-2.a and b show the use of the IGS system pointer to identify the position 

of the markers over the brain on MRI. Normal brain markers are also placed by the 

operating surgeon based on visual appearance and anatomical relationship to sulci and 

gyri, apart from the IGS feedback. Normal markers are placed where the operating 

surgeon is quite confident that the brain tissue is normal. The operator of the HS 

acquisition system then captures the HS image of the exposed brain surface. The image 
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size established by the operator for the image acquisition should be oversized to avoid 

the inherent movement of the system when the scanning platform is starting the 

capturing process. This will ensure the spatial coherence of the center of the image 

where the region of interest (the exposed brain surface) is located. In addition, the 

operator must avoid unintentional movements of the acquisition system during the 

image acquisition for the same reason. In case of an unexpected movement, the 

capturing process must be repeated. 

 

Figure 4-1: In-vivo HS brain surface acquisition procedure. (a) Hyperspectral 

acquisition system being used during the acquisition process in a neurosurgical operation; 

(b) Hyperspectral images acquired with the acquisition system at different wavelengths from 

a patient affected by a glioblastoma tumor; (c) HSI data cube; (d) RGB image generated from 

the HS cube with the tumor tissue marker (left) and the normal tissue marker (right) placed 

on the brain surface; (e) and (f) Histopathological images of the tumor tissue sample 

(glioblastoma) and normal tissue sample respectively; (g) Gold standard map where certain 

pixels have been labeled in four different classes: normal brain tissue (green), tumor tissue 

(red), blood vessel (blue) and background (black); (h) Average and standard deviation (Std) 

of the pre-processed spectral signatures of tumor tissue, normal tissue and blood vessel 

labeled pixels, represented in red, green and blue color respectively. 
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(a) (b) 

Figure 4-2: MRI markers registration. (a) IGS system pointer over the tumor marker 

located on the exposed brain surface; (b) IGS system screen snapshot with the coordinates of 

the tumor marker in the MRI. 

4.3.3 Tissue resection 

After the first HS image capture, the HS acquisition system is moved out from the 

surgical area and the operating surgeons undertake the tumor resection. Surgeons take 

samples of the tissue located inside the tumor marker and place it in a sterile container. 

An identification (ID) number is assigned to the container with the corresponding 

marker number. These samples are sent to the neuropathology laboratory and the 

results are used for the gold standard dataset generation. The IDs assigned to the 

markers serve as guidance in the labeling process. When possible, a second set of 

images is captured while the tumor is being resected. When there is macroscopically 

normal brain and tumor exposed and when the operating surgeon feels that it is safe to 

temporarily hold surgery, the surgeon ensures perfect hemostasis and washes the field 

thoroughly with warm saline to wash away any residual blood while ensuring no 

significant temperature change (and resultant blood flow change). Next, the field is 

sucked dry by the application of a cottonoid to the parenchyma and applying suction to 

this. Then, the operating surgeon identifies the most suitable location to capture the 

images. Markers are again placed on the tumor (if it was possible) and also onto 

another area distant from the tumor where the operating surgeon is confident that it 

represents normal brain. HS images are then captured again and tissue samples, 

resected from the position of the tumor markers, are sent to the neuropathology 

laboratory for tissue diagnosis. The number of markers used in each surgery is variable 

and depends on the nature and characteristics of the tumor. 

4.3.4 Neuropathology evaluation 

The resected tissue is sent to the neuropathology laboratory where it is formalin 

fixed and undergoes standard H&E (Hematoxylin and Eosin) staining and any further 

required staining to establish a definitive histopathological diagnosis. 

Neuropathologists perform the histopathological diagnosis, employing techniques used 

in the routine clinical practice. Samples are classified as tumor or normal brain. 

Furthermore, tumor samples are subdivided into tumor type and grade. Figure 4-1.e 

and Figure 4-1.f show an example of a histopathological image of a glioblastoma and 

normal brain tissues, respectively.  

4.3.5 Sample labeling 

In the last step, by using the information provided by the neuropathologists and the 

knowledge of the operating surgeons, several pixels are labeled taking as a reference the 
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spectral signatures of certain pixels inside the markers and outside the markers for the 

non-tumor classes. After the labeling process (explained in Section 4.4), a gold 

standard map of each image is obtained (Figure 4-1.g). Pixels that present specular 

reflections produced by the non-uniformity of the brain surface are avoided.  

The gold standard maps are composed of four classes: tumor tissue (red color), 

normal brain tissue (green color), blood vessels (blue color) and background (black 

color). Based on the indications given by the pathologist, the eventually possible 

normal inflamed labeled tissue has been included in the normal class. The background 

class comprises any other tissues, materials or substances that can be present in the 

surgical scene and are not relevant for the tumor resection. Blood vessels and 

background pixels are labeled by the surgeon with the naked eye. White pixels in the 

gold standard map are the pixels that are not labelled. 

4.4 HS gold standard generation 

In this application where human living patients are involved, it is not possible to 

achieve a complete gold reference map of the captured image with 100% of certainty 

that the pixel represents the established class. To achieve that, a pathologist should 

analyze the entire brain tissue exposed in the image and this is obviously not possible 

due to ethical reasons, since in this case the neurosurgeon should resect all the tissue 

exposed in the brain surface (including tumor and normal), causing serious problems 

to the patient health. In other fields such as remote sensing or even in the medical field 

but using ex-vivo or in-vitro tissue the complete gold reference generation is a 

relatively easy task, but using in-vivo human samples (and especially in the brain) this 

task is highly complex and practically impossible nowadays. 

In this section, we propose a methodology to achieve a partial gold standard map of 

the HS image of the in-vivo brain surface based on four key factors: 1) The pathological 

analysis of a tumor sample to confirm the tumor tissue location and diagnosis; 2) The 

association of the HS captured image with the intraoperative neuronavigation system 

to locate the approximated area of the tumor; 3) The experience and knowledge of the 

neurosurgeon to identify the normal, hypervascularized and background classes and 

also the approximated area of the tumor tissue following the indications of the 

neuronavigation system and the pathological diagnosis; 4) The spectral properties of 

each tissue class to find the most similar pixels respect to a reference pixel selected by 

the operating surgeon by using a labelling tool specifically developed to this end.   

Commonly, manual gold standard dataset definition is usually done by visual 

inspection of the scene and the successive labeling of each sample. This labeling 

methodology can produce errors in the final gold standard map, since it is possible to 

label by mistake pixels with different spectral information in the same class due to the 

manual procedure. Therefore, in order to build a gold standard as reliable as possible, a 

methodology based on the Spectral Angle Mapper (SAM) algorithm [145] was proposed 

to generate a robust and efficient gold standard dataset.  

An interactive graphical user interface was designed using the Matlab® GUIDE 

application (The MathWorks Inc., Natick, MA, USA). In the first step of the labeling 

process, the specialist (the operating surgeon) selects the coordinates of a reference 

pixel in a synthetic RGB image generated from the HS cube. The synthetic RGB image 
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is generated by extracting three specific spectral bands from the HS cube that 

correspond with red (708.97 nm), green (539.44 nm), and blue (479.06 nm) colors. The 

reference pixel can be selected at the site where the biopsy was performed (where the 

marker is located) or at a site far enough from the tumor margins where the surgeon 

can be quite confident that the tissue is abnormal (in the case of tumor labeling). The 

tissue presented inside the tumor markers was sent to pathology for a precise diagnosis 

of the tumor. In the case of normal tissue, hypervascularized tissue, and background 

classes, the labeling is performed by selecting a reference pixel by the naked eye based 

on the surgeon‘s knowledge and experience. Then, the spectral angle between the 

selected pixel and the other pixels of the HS cube is calculated. In this moment, the 

operating surgeon manually establishes a threshold to match the physiological features 

of the selected tissue. This means that the most spectrally similar pixels to the selected 

reference pixel are highlighted using a binary mask. This masked image contains only 

pixels with a spectral angle lower than the established threshold with respect to the 

reference pixel. Once the user concludes that only the pixels belonging to one class have 

been highlighted, the selected pixels are assigned to that class. Neurosurgeons were 

instructed to select only a few sets of very reliable pixels instead of a wider set of 

uncertain pixels. 

This labeling framework provides two main advantages to generate the gold maps. 

On the one hand, when the specialist selects a reference pixel, it is possible to ensure 

that the selected pixel indeed belongs to a certain class by looking at the synthetic RGB 

masked image, where the pixels with lower spectral angle with respect to the reference 

pixel are shown. On the other hand, the process of manually selecting pixels from a HS 

cube for each class is a time-consuming task, so this semi-automatic method allows 

generating the gold standard in an efficient way.   

Figure 4-3 presents the block diagram of this procedure and the information 

available at each stage of the labeling process. Figure 4-3.a represents the pre-

processed HS cube that is the input to the labeling chain while Figure 4-3.b shows the 

synthetic RGB representation of the HS cube, where the reference pixels are selected. 

Figure 4-3.c illustrates the synthetic RGB masked image after applying the SAM 

algorithm between the reference pixel and the other pixels of the HS cube with a certain 

fixed threshold. In addition, in this image is possible to see the area selected by the 

specialist, which will be labeled in a certain class. Finally, Figure 4-3.d shows the final 

gold standard map generated after the labeling procedure, where the labeled pixels that 

belong to tumor tissue, normal brain tissue, blood vessels and background are 

identified with red, green, blue and black colors respectively. Each HS image of the 

generated database has its respective gold standard map. In addition, Figure 4-4 

represents the total number of reference pixels selected for each HS image and the 

threshold values established for each reference pixel for each class. As it can be seen, in 

average, the threshold values for the normal, tumor and hypervascularized classes are 

lower than 10%. However, in the background class there is a higher variability due to 

the different materials and tissues that can be included in this class. 
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Figure 4-3: Semi-automatic labeling process flowchart. (a) Pre-Processed HS cube; 

(b) Synthetic RGB image extracted from the HS cube; (c) SAM mask over the synthetic RGB 

image; (d) Final gold standard map. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4-4: Threshold values selected for each reference pixel in each image for 

each class. (a) Normal class. (b) Tumor class. (c) Hypervascularized class. (d) Background 

class. 
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Figure 4-5 shows a screenshot of the semi-automatic labeling tool where the 

labeling procedure of the blood vessel class has been done. On the left side of the image 

(Figure 4-5.a), the synthetic RGB representation of the HS cube is shown. In the 

center (Figure 4-5.b), the SAM representation is presented, where only the pixels that 

have a spectral angle less than 0.08º respect to the selected reference pixel are 

highlighted. In this case, the reference pixel and its correspondent SAM representation 

belongs to the blood vessel class. Finally, on the right side of the image (Figure 4-5.c), 

the gold standard map generated for patient 2 is shown, where tumor tissue, normal 

tissue, blood vessels and background are represented in red, green, blue and black 

colors respectively. Some sliders controls are presented in the labeling tool so as to 

adjust the gamma of the synthetic RGB image, the overlapping transparency of the 

SAM image over the synthetic RGB image and the threshold value.  

Summarizing, the reliability of the gold standard is guaranteed by the use of the 

intraoperative MRI neuronavigation for placing the rubber ring markers; the operating 

surgeon knowledge and experience for the labeling of the normal tissues, blood vessels 

and background samples; and finally, the pathological analysis of the resected tissue for 

the tumor labeling. 

 

Figure 4-5: Screenshot of the semi-automatic labeling tool interactive interface. 

(a) Synthetic RGB image; (b) SAM masked image; (c) Final gold standard map. 

4.4.1 Definition of the of the labeling classes 

According to the WHO (World Organization Health) tumor classification list, a class 

definition for the labeling of the tissue samples was established (Table 4-1). This class 

list was done taking into account the different possible elements that can be observed 

in a HS image of a neurosurgical scene, allowing the inclusion of more classes if 

necessary, without altering the rest of the classes. Table 4-2 shows the reduced final 

class definition list that was employed in the performed experiments taking into 

account the final sample types that were acquired during the data acquisition 

campaigns. 

4.4.2 Gold standard dataset 

The labeled dataset generated using the semi-automatic labeling tool is composed by 

37 in-vivo brain surface images from 22 different patients, where tumor and normal 
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tissue were labeled as well as blood vessels and other tissue, materials or substances 

that can be presented in the surgical scene (called background). These images were 

selected due to the captures were suitable for the labeling process, allowing the 

specialists performing the labeling with a high confidence. This dataset includes 

primary grade IV glioblastoma (GBM) tumors, primary grade III anaplastic 

oligodendroglioma tumors and some secondary tumors (lung, renal and breast). Table 

4-3 summarizes the operations and images that were labeled to generate the gold 

standard maps and the total number of labeled pixels per each HS image. Table 4-4 

details the total number of pixels labeled per each class. Figure 4-6 shows the average 

and standard deviation of each type of tissue presented in the labeled dataset across all 

the patients, differentiating between the tumor types. Furthermore, Figure 4-7 

illustrates the synthetic RGB images and the gold standard maps, generated by the 

specialists using the semi-automatic labeling tool, of each HS image. 

Table 4-1: Labeling class list 

Class Id Class Name Color Map 

100 
Normal 

(Healthy) 

Non-defined 

Green [0 255 0] 101 Grey Matter (GM) 

102 White Matter (WM) 

200 

Tumor 

Primary 

High Grade 
(HG) 

Grade IV (GIV) 

Pure Glioblastoma (PGBM) 

Red [255 0 0] 

201 
Mixed (MixedGIV) 

[With lower grade component, 
G III, G II] 

202 mMGMT 

203 1p19q Mutation (1p19q) 

220 

Grade III (GIII) 

Oligodendroglial 

221 Astroglial 

222 Mixed (MixedGIII) 

230 
Low Grade 

(LG) 

Grade II (GII) Ependymoma 

240 
Grade I (GI) 

Ganglioglioma 

241 Meningioma 

250 

Secondary 

Lung 

251 Breast 

252 Skin 

253 Renal 

254 GI 

255 Prostate 

256 Ovarian 

257 Colon 

270 Other Necrosis 

300 

Blood Vessel 

Generic Blood 

Blue [0 0 255] 

301 Venous Blood Vessel 

302 Arterial Blood Vessel 

303 Non-Defined Blood Vessel 

310 Clot 

320 

Background 

Meninges 

Dura Mater 

Black [0 0 0] 

321 Arachnoid 

322 Pia Mater 

330 
External 

Skin 

331 Skull Bone 

400 Surgical Elements 
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Table 4-2: Final labeling class list 

Class Id Class Name Color Map 

100 Normal (Healthy) Green [0 255 0] 

200 

Tumor 

Primary 
High Grade 

(HG) 

Grade IV (GIV) Glioblastoma (GBM) 

Red [255 0 0] 

220 Grade III (GIII) 
Anaplastic 

Oligodendroglioma 

250 

Secondary 

Lung 

251 Breast 

253 Renal 

300 Blood Vessel Blue [0 0 255] 

400 Background Black [0 0 0] 

 

Table 4-3: Summary of the in-vivo HS human brain image database 

Hospital 
Patient 

ID 
Image 

ID 

Size 
(width x height x 

bands) 

#Labeled Pixels 
Diagnosis 

N T BV B 

UHDRN 

004 
02 389 x 345 x 826 5,007 0 965 1,992 Normal Brain 

03 271 x 234 x 826 0 28 0 0 Lung Adenocarcinoma (S) 

005 01 483 x 488 x 826 6,061 21 1,727 20,483 Renal Carcinoma (S) 

007 01 582 x 400 x 826 7,714 0 1,089 0 Normal Brain 

008 
01 460 x 549 x 826 2,295 1,221 1,331 630 GIV Glioblastoma (P) 

02 480 x 553 x 826 2,187 138 1,000 7,444 GIV Glioblastoma (P) 

010 03 371 x 461 x 826 10,626 0 2,332 3,972 GIV Glioblastoma (P) 

012 
01 443 x 497 x 826 4,516 855 8,697 1,685 GIV Glioblastoma (P) 

02 445 x 498 x 826 6,553 3,139 6,041 8,731 GIV Glioblastoma (P) 

013 01 298 x 253 x 826 1,827 16 129 589 Lung Carcinoma (S) 

014 01 317 x 244 x 826 0 30 64 1,866 GIV Glioblastoma (P) 

015 01 376 x 494 x 826 1,251 2,046 4,089 696 GIV Glioblastoma (P) 

016 

01 335 x 323 x 826 3,970 0 246 12,002 Normal Brain 

02 335 x 326 x 826 349 0 0 2,767 Normal Brain 

03 315 x 321 x 826 603 0 234 1,696 Normal Brain 

04 383 x 297 x 826 1,178 96 1,064 956 GIV Glioblastoma (P) 

05 414 x 292 x 826 2,643 0 452 5,125 GIV Glioblastoma (P) 

017 01 441 x 399 x 826 1,328 179 68 3,069 GIV Glioblastoma (P) 

018 
01 479 x 462 x 826 13,450 0 488 9,773 GI Ganglioglioma (P) 

02 510 x 434 x 826 4,813 0 958 5,895 GI Ganglioglioma (P) 

019 01 601 x 535 x 826 6,499 0 1,350 1,933 Meningioma 

020 01 378 x 330 x 826 1,842 3,655 1,513 2,625 GIV Glioblastoma (P) 

021 

01 452 x 334 x 826 3,405 167 793 5,330 Breast Carcinoma (S) 

02 448 x 324 x 826 2,353 31 555 2,137 Breast Carcinoma (S) 

05 433 x 340 x 826 969 127 1,637 1,393 Breast Carcinoma (S) 

022 

01 597 x 527 x 826 2,806 0 1,064 3,677 GIII Anaplastic Oligodendroglioma (P) 

02 611 x 527 x 826 8,174 0 680 0 GIII Anaplastic Oligodendroglioma (P) 

03 592 x 471 x 826 0 96 0 0 GIII Anaplastic Oligodendroglioma (P) 

UHS 

025 02 473 x 403 x 826 977 1,282 907 3,687 GIV Glioblastoma (P) 

026 02 340 x 324 x 826 507 0 128 0 Normal Brain 

027 02 493 x 476 x 826 6,352 0 5,606 21,785 Normal Brain 

028 

03 422 x 398 x 826 2,839 0 73 13,341 Normal Brain 

04 482 x 408 x 826 0 0 0 10,025 Lung Adenocarcinoma (S) 

05 482 x 390 x 826 0 1,920 0 0 Lung Adenocarcinoma (S) 

029 
02 365 x 371 x 826 2,098 0 3,341 11,258 Normal Brain 

04 399 x 342 x 826 0 1,748 0 3,785 GII Anaplastic Oligodendroglioma (P) 

030 02 382 x 285 x 826 2,050 0 9,242 15,337 Normal Brain 

Total 22 Operations - 37 Captures 117,242 16,795 57,863 185,684  

*(N) Normal tissue; (T) Tumor tissue; (BV) Blood vessel; (B) Background; (S) Secondary; (P) Primary. 
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Table 4-4: Summary of the labeled dataset 

Class #Labeled pixels 

Normal 117,242 

Tumor 

Primary (GIV) GBM 12,641 

Primary (GIII) Anaplastic Oligodendroglioma 1,844 

Secondary 

Lung 1,964 

Renal 21 

Breast 325 

Blood Vessel 57,863 

Background 185,684 

Total: 377,584 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4-6: Average and standard deviation (Std) across all the patients of the 

different types of spectral signatures in the labeled database. (a) Normal tissue. 

(b) Blood vessels. (c) GBM tumor. (d) Anaplastic oligodendroglioma tumor. (e) Secondary 

breast tumor. (f) Secondary lung tumor. 
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Figure 4-7: RGB representations and gold standard maps of the HS images that 

compose the in-vivo HS human brain image database. The numeric code shown 

above each image represents the Patient ID and Image ID (PatientID-ImageID) that are 

detailed in Table 4-3. 
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4.5 Conclusions 

In this chapter, the procedure and methodology followed to generate the in-vivo HS 

human brain image database, employing the intraoperative HS acquisition system 

described in Chapter 3, were presented. This procedure involves a multidisciplinary 

team of engineers, neurosurgeons and pathologists in order to ensure the generation of 

a reliable image database. The HS acquisition system was assessed during surgical 

procedures in two different hospitals in UK and Spain, obtaining 80 HS images from 36 

different patients in the VNIR and NIR spectral ranges. However, in the work 

performed in this thesis only the VNIR information was employed, involving 44 HS 

cubes from 35 different patients. 

A specific methodology to obtain a golden standard database to be employed in the 

development of the HS brain cancer detection algorithms was established. This gold 

standard dataset was generated using a semi-automatic labeling tool based on the SAM 

algorithm. The labeling tool was employed by the specialists (neurosurgeons) in order 

to label 37 HS images from 22 different patients, generating a gold standard map of 

each image. In these images, tumor and normal tissue were labeled (when possible) as 

well as the blood vessels and other tissues, materials or substances that can be found in 

the surgical scene and are not relevant for the surgical resection procedure (called 

background). This dataset includes both primary (grade IV glioblastoma and grade III 

and II anaplastic oligondendrogliomas) and secondary (lung, renal and breast) tumors. 

A total of 377,584 spectral signatures where included in the gold standard dataset. The 

higher quality images obtained in this database have been uploaded in an open access 

repository to provide the scientific community with the first HS human brain database 

for research purposes [146].  
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Chapter 5: Hyperspectral brain cancer 

detection algorithm 

5.1 Introduction 

This chapter presents the development of a novel classification method for brain 

cancer detection that employs the especial characteristics of HS images to help 

neurosurgeons to accurately determine the tumor boundaries in surgical-time during 

the resection, avoiding excessive excision of normal tissue or unintentionally leaving 

residual tumor. The algorithm proposed in this work consists of a hybrid framework 

that combines both supervised and unsupervised machine learning methods. Firstly, a 

supervised pixel-wise classification using a SVM classifier is performed. The generated 

classification map is spatially homogenized using a one-band representation of the HS 

cube, employing the FR-tSNE dimensional reduction algorithm, and performing a KNN 

filtering. The information generated by the supervised stage is combined with a 

segmentation map obtained via unsupervised clustering employing a HKM algorithm. 

The fusion is performed using a majority voting approach that associates each cluster 

with a certain class. To evaluate the proposed approach, five HS images of the brain 

surface affected by GBM tumor from five different patients have been used in this 

chapter. The final classification maps obtained were analyzed and validated by 

specialists. 

This work has been carried out in collaboration with the research group of Prof. 

Guang-Zhong Yang at the Hamlyn Centre of the Imperial College London and also with 

the research group of Prof. Bogdan Stanciulescu at the Ecole Nationale Supérieure des 

Mines de Paris (ENSMP). The main contributions of this work have been reported in 

several publications [144], [146]–[151]. 

5.2 Brain cancer detection algorithm 

The classification framework developed in this study aims to exploit both the spatial 

and spectral features of the HS images. Figure 5-1 illustrates the scheme of this 

classification framework based on five main steps: data pre-processing, dimensional 

reduction, spatial-spectral supervised classification, unsupervised clustering 

segmentation and hybrid classification. After capturing the in-vivo brain surface HS 

cube (Figure 5-1.a), the raw image is pre-processed in order to homogenize the 
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spectral signatures of each pixel (Figure 5-1.b). Then, the gold standard employed for 

building the supervised classifier model is extracted by the specialists (Figure 5-1.c) 

using the previously described labeling tool and the SVM classifier is trained (Figure 

5-1.d). Once the SVM model is generated, it is used to perform the supervised pixel-

wise classification over the pre-processed HS cube (Figure 5-1.e). Next, a spatial-

spectral homogenization is accomplished [152] using a KNN filtering (Figure 5-1.g), 

where a one-band representation of the HS cube is employed. The dimensionality 

reduction algorithm used to obtain the one-band representation of the HS cube is the 

FR-t-SNE algorithm (Figure 5-1.f). This algorithm has been selected because it 

provides the best score along different HS images compared to other dimensionality 

reduction algorithms [153]. Once the spatial-spectral homogenization has been 

performed, a filtered classification map is available. In order to obtain the final 

classification map, the spatial-spectral supervised classification map is combined with a 

segmentation map obtained via unsupervised hierarchical clustering (Figure 5-1.h) 

using a majority voting approach [154] (Figure 5-1.i). 

 

Figure 5-1: Brain cancer detection and delimitation algorithm framework 

overview diagram. (a) HS cube of in-vivo brain surface; (b) Pre-processing stage of the 

algorithm; (c) Database of labeling samples generation; (d) SVM model training process 

employing the labeled samples dataset; (e), (f) and (g) Algorithms that conform the spatial-

spectral supervised classification stage; (h) and (i) Algorithms that generate the 

unsupervised segmentation map and the final HELICoiD TMD map, respectively. 

5.2.1 Data pre-processing 

After the acquisition of the in-vivo brain surface HS cube (Figure 5-1.a), a pre-

processing chain, already explained in [147], is applied to the HS cube to homogenize 

the spectral signatures of each pixel (Figure 5-1.b) and to reduce the dimensionality of 

the HS image without losing the main spectral information contained on it. This pre-

processing chain consists of five steps.  

The first step performs a radiometric calibration of the raw spectral signature of 

each pixel using the black and white reference images captured by the acquisition 

system inside the operating theatre, with the same illumination conditions where the 

image will be captured. The white reference image is obtained using a standard white 

reference tile and the dark reference image is acquired by keeping the camera shutter 

closed. Figure 5-2.a and b show an example of a single raw spectral signature and the 

calibrated spectral signature of a grade IV GBM tumor respectively.  

The second step applies noise filtering using the first stage of the HySIME algorithm 

where a function called Hyperspectral Noise Estimation infers the noise in the HS data, 

by assuming that the reflectance at a given band is well modeled by a linear regression 
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on the remaining bands. Figure 5-2.c plots the spectral signature after the HySIME 

noise filtering application.  

In the third step, the spectral bands from the lowest and highest bands are removed 

due to their low SNR because of the limited performance of the CCD sensor in these 

ranges. Bands from 0 to 50 and from 750 to 826 are removed. After the extreme noise 

band removing step, the spectral signatures are reduced in bands through spectral 

averaging due to the information redundancy between contiguous bands. The reduced 

HS cube is formed of 129 spectral bands.  

Finally, the last step of the pre-processing chain applies normalization over the 

samples to avoid the different radiation intensities of each pixel produced by the non-

uniform surface of the brain. Figure 5-2.d illustrates the final pre-processed spectral 

signature. 

 

Figure 5-2: Spectral signature of a grade IV GBM tumor tissue. (a) Raw spectral 

signature; (b) Calibrated spectral signature; (c) HySIME filtered spectral signature; (d) Final 

pre-processed spectral signature. 

5.2.2 Dimensional reduction algorithms 

From an information-processing point of view, the intrinsic dimensionality of HS 

images can be significantly reduced before subsequent image characterization steps are 

applied. Dimensionality reduction algorithms map high-dimensional data into a 

meaningful representation of reduced dimensional space so that the observed 

properties of the initial data are still preserved in the low dimensional space. Since the 

intrinsic dimension, as well as the geometry of the initial data, is unknown, 

dimensionality reduction, in general, is an ill-posed problem that can only be solved by 
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assuming certain data properties. Thus far, many algorithms for dimensionality 

reduction have been developed in literature [155]. Figure 5-3 shows the taxonomy of 

the different dimensionality reduction techniques established by Van Der Maaten et al. 

in [155].  

 

Figure 5-3: Taxonomy of dimensionality reduction techniques [155]. 

These techniques can be subdivided into two main types: 1) techniques that attempt 

to preserve global properties of the original data in the low-dimensional representation 

(Convex); 2) techniques that attempt to preserve local properties of the original data in 

the low-dimensional representation (Nonconvex). Within these two categories, there is 

a relevant differentiation between linear and non-linear techniques. 

Principal Component Analysis (PCA) [156] is one of the most popular linear 

techniques for dimensionality reduction. It maps the data preserving as much as 

possible their variance. However, PCA has two important limitations: it is based on a 

global property (the variance of the data) and it is a linear technique.  

Non-linear methods have the advantage that can deal better with complex real world 

data. Their workflow is usually as follows: they decompose the nonlinear structures into 

linear subspaces, in the same way that some curves can be approximated by linear 

subspaces and use a solution similar to the PCA on each subspace. Techniques such as 

Isomap [157], Locally Linear Embedding (LLE) [158], Hessian [159] and Laplacian 

[160] are examples of non-linear methods. 

As a cross-cutting work performed during the development of this thesis, several 

dimensional techniques were analyzed and reported by Ravi et al. in [153]. In this work, 

a new quality score to compare dimensional reduction techniques was proposed, where 

the criterion based on local and global properties proposed in [161] was combined with 

a global contrast factor (GCF) [162] and a measure that depends on the shape of the 

histogram of the embedded image. These two criteria take into account also the visual 

quality of the embedded image. The medical HS images of human brain surface 

generated during development of the work described in this thesis were employed to 

perform the comparison study. In addition, in this work, authors propose the Fixed 

Reference t-Distributed Stochastic Neighbors Embedding (FR-t-SNE) algorithm that is 

an extension of the t-Distributed Stochastic Neighbors Embedding (t-SNE) [163]. t-

SNE is a non-linear technique well suited for embedding high-dimensional data into a 

lower dimensional space. It models each high-dimensional object by a low-dimensional 

point in such a way that similar objects are modeled by nearby points and dissimilar 

objects are modeled by distant points. The main advantage of t-SNE is that it captures 
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the local structure of the high-dimensional data and reveals global structures similar to 

clusters at the same time. 

As stated in [153], embedding a HS image using t-SNE may not guarantee consistent 

results since, at each dimensional reduction process of a new image, the random nature 

of the t-SNE can create embedded representations that are not persistent. Therefore, it 

can happen that similar tissues will be represented with different low dimensional 

representations across different images. This makes subsequent tissue characterization 

more difficult. This problem is mainly generated by the lack of a fixed coordinate 

system, which does not allow the comparison of the embedded results across different 

tissue samples [164].  

FR-t-SNE tries to overcome these limitations by using a learning process aimed at 

finding a fixed reference coordinate system. FR-t-SNE is divided in three main steps: in 

Step 1, an optimal reference system is fixed to maintain a consistent manifold 

embedding along with all the images and circumvent the lack of a fixed coordinate 

system. In Step 2, the manifold is gradually tested on the training set using the 

predefined fixed reference. Finally, in the last step, a HS image is embedded efficiently. 

A KNN classification algorithm is used to obtain the low vector representation of each 

high dimensional vector after all the training images are processed and the manifold 

discovered. This KNN classifier will use a lookup table, containing the values of the 

learned reference coordinates to predict the embedded value of each sample in each 

new HS image.  

Table 5-1 shows the comparative study performed in [153], where 23 different 

dimensional reduction approaches were compared using the proposed quality score 

employing three different brain images to evaluate the performance.  

5.2.3 Spatial-spectral supervised classification 

The spatial-spectral supervised stage of the brain cancer detection algorithm is 

based on three steps: pixel-wise supervised classification, dimensional reduction and 

spatial homogenization filtering.  

The pixel-wise classifier employed in the supervised classification is the SVM 

algorithm. This algorithm requires a confident labeled dataset in order to train the 

model that will be used to classify the input data. In this work, the labeled dataset of in-

vivo brain samples that is used to train the SVMs was created by combining the efforts 

of neurosurgeons and pathologist, as it has been previously described in section 4.4. In 

this work, the LIBSVM [165] has been used for support vector classification MATLAB® 

implementation. 

Before explaining the methodology employed for performing a supervised 

classification over the available HS data, some considerations have to be taken into 

account. Due to the impossibility of having a way to extract the labeled information 

from all the pixels in a HS cube of brain tissue, there are two ways of measuring the 

performance of the generated supervised models. For the available labeled dataset, it is 

possible to use standard metrics in order to measure the accuracy provided by the 

model when classifying unseen data. Nevertheless, for evaluating a supervised model 

applied to a whole HS cube (where not all pixels have been labeled) only the visual 

evaluation of an expert is possible.  
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Table 5-1: Comparison of the dimensional reduction algorithms sorted 

according to the proposed quality score [83] 

Approach Image 1 Image 2 Image 3 Score 

LCC [166] 

 

1.18 

Diffusion Maps [167] 1.47 

Landmark 
MVU [168] 

1.50 

LLE [158] 1.53 

Hessian LLE [159] 1.53 

NPE [169] 1.57 

LTSA [170] 1.58 

PCA [156] 1.63 

Autoencoder [171] 1.66 

Isomap [172] 1.71 

LLTSA [173] 1.73 

Landmark Isomap [174] 1.76 

CCA [175] 1.78 

SPE [176] 1.85 

Prob. PCA [177] 1.90 

Sammon [178] 1.98 

Factor Analysis [179] 2.06 

LPP [180] 2.08 

MVU [181] 2.25 

Fast MVU [182] 2.33 

Laplacian [160] 2.38 

FR-t-SNE [153] 2.61 

t-SNE [163] 2.66 
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The methodology for evaluating the supervised classifiers in a quantitative way is as 

follows: first, we use the labeled information corresponding to the dataset, and then we 

apply a 10-fold cross validation in order to measure the performance of the model. The 

quantitative evaluation metrics used for this purpose are sensitivity, specificity and 

overall accuracy metrics, and will be defined in section 5.3. Once the quantitative 

metrics have been obtained, the previously trained SVM classifier is used to classify a 

whole HS cube, and then it is evaluated by neurosurgeons in order to analyze the 

quality of the algorithm in distinguishing different types of tissues, materials or 

substances. 

 In order to include the spatial features of the HS images, a spatial homogenization 

is applied to improve the supervised classification results by incorporating the 

neighborhood information of each pixel into the classification chain. The algorithm 

proposed in [152], which refines the pixel-wise classification probability map using a 

KNN filtering on non-local neighborhoods of a pixel, were used. The algorithm has 

shown competitive classification accuracy results compared with other state-of-art 

spatial-spectral classification approaches [152].  

This algorithm requires two inputs: the probability maps or confidence scores 

obtained from the supervised classifier ( ) and the guidance image ( ) (which is usually 

a one-band representation of the input HS image). The spatial-spectral feature vector is 

defined in Equation (5), where   is the normalized pixel value (spectrum) at location   

and     ,      are the normalized longitude and latitude of the pixel  . The output of the 

KNN-filtering is given by Equation (6), where    refers to the K-nearest neighbors of 

the pixel   found in the feature space     . It can be seen that at     there is no spatial 

information, while when non-zero it captures the spatial information of pixel   given by 

     and     . 

                             (5) 

     
     

 
      (6) 

When   is set to zero, the spatial coordinates are not considered in the KNN filtering 

process, and when the value of   increases, the classification results tend to be 

oversmoothed, decreasing the accuracy of the classification results. The parameter 

  has a similar influence in the classification results: when the   value is high, the 

filtering method oversmooths the classification results, worsening the accuracy of the 

classification results. In this approach, it is not possible to provide a quantitative 

measure of the influence of   and   parameters, due to the absence of a complete gold 

standard map. Nevertheless, the influence of these parameters in the generation of the 

classification maps was studied.  

As mentioned before, large values of   or   tends to oversmooth the obtained 

classification maps. Several executions of the KNN filtering were performed employing 

different values of   (5, 10, 20, 40 and 60) and   (0, 1, 5, 10 and 100). Figure 5-4 

shows the filtered classification maps of the patient 12 capture 1 (Op12C1) using 

different values of   and  . In both cases, small values of   and   result in a mix of 

small classes that do not represent the real distribution of the tissues. On the other 

hand, large values of   and   tend to oversmooth the classes. After a visual inspection 
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of the results by the specialists (neurosurgeons), the final values of   and   chosen for 

this study were      and    . These values generate a filtered map where the 

different classes are homogenized enough without oversmoothing the classification 

result (Figure 5-4.d and Figure 5-4.g). 

In this spatial-spectral supervised classification algorithm, the probability maps are 

obtained from the confidence scores of the SVM classification result, while the guidance 

image is obtained by calculating the one band representation of the HS cube by 

performing a dimensionality reduction using the FR-t-SNE algorithm [153]. The one-

band representation was obtained from the pre-processed HS cube with 750 bands 

(without applying the band averaging step in the pre-processing chain). 

 

Figure 5-4: KNN filtered maps obtained with different K and λ values. (a), (b), (c), 

(d) and (e) filtered maps obtained with K equal to 5, 10, 20, 40, and 60, while keeping λ 

value fixed to 1; (f), (g), (h), (i) and (j) filtered maps obtained with λ equal to 0, 1, 5, 10, and 

100, while keeping K value fixed to 40. 

5.2.4 Unsupervised clustering segmentation 

The unsupervised stage of the algorithm is based on a clustering method [183]. This 

method provides a segmentation map where all the different tissues, materials or 

substances found in the HS image are grouped forming clusters that have similar 

spectral characteristics. Three different clustering algorithms were applied to the 

available HS images differentiating between 24 clusters: H2NMF [183], HKM and 

HSKM [86].  

After a visual evaluation of the resulting maps by the specialists, it was found that all 

clustering methods provided useful information about the different tissues, materials 

and substances that were presented in the scene. Due to the fact that all three clustering 

methods provided similar information, HKM was selected in this study since it had the 

lower computational cost providing similar results. In the context of this work, the 

clustering process provides a good delimitation of the different areas presented in the 

image that should be identified by a specialist or by an automatic process, i.e., 

supervised classification. For this reason, a method to merge the results from the 

supervised and unsupervised stages of the brain cancer algorithm is required to obtain 

the final classification map.  
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5.2.5 Hybrid classification 

In the previous sections, the advantages of supervised and unsupervised learning 

methods have been introduced. On the one hand, supervised learning can infer the 

knowledge previously provided by neurosurgeons and pathologists, but it can poorly 

provide a good delimitation of the tumor area. On the other hand, the unsupervised 

clustering results provide a good association of similar pixels, but each cluster is 

semantically meaningless. In order to solve this problem, an algorithm for merging 

these two sources of information was employed. This hybrid algorithm was previously 

used in hyperspectral imaging [154], and consists of a technique that merges the 

information from a supervised classification map and an unsupervised segmentation 

map (Figure 5-5).  

In the first step of this algorithm, the segmentation map and the supervised 

classification map are calculated independently from the same pre-processed HS cube. 

Once both maps have been obtained, the information is merged using the majority 

voting algorithm. For each cluster found by the clustering algorithm, all pixels are 

assigned to the most frequent class in each region in the supervised classification map. 

The combination of the supervised classification with the segmentation map provides 

some advantages. On the one hand, the unsupervised segmentation maps obtained with 

the clustering process have shown good capability in finding homogeneous spatial data 

structures from the HS cube. However, it does not provide any identification of the 

tissue, material or substance that the cluster belongs to. On the other hand, the 

supervised classification approach employs the diagnosis information provided by 

medical doctors (neurosurgeons and pathologists) to generate a classification map 

where each pixel of the image has been assigned to a certain class. However, the 

amount of labeled information is limited. Using the previously described MV algorithm, 

the strengths of each method are exploited.  

As stated in [154], oversegmentation (different clusters correspond to the same 

class) is not a crucial problem, but undersegmentation is not desired. Figure 5-5 

graphically represents the method of the hybrid algorithm where an unsupervised map, 

composed by four different clusters that have no semantic meaning, is merged with a 

supervised classification map, composed by four different classes that have histological 

meaning. The final hybrid classification map represents each pixel within a certain class 

(identified by the supervised classification algorithm) grouped taking into account the 

clusters obtained by the unsupervised segmentation map (that delimitates the borders 

of each cluster region). 
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Figure 5-5: Hybrid classification example based on a majority voting technique. 

The unsupervised segmentation map and the supervised classification maps are merged 

using the majority voting method. 

5.3 Evaluation metrics 

The methodology for evaluating the supervised classifiers in a quantitative way is as 

follows: firstly, the labeled information corresponding to a simulation was used, and 

then, a 10-fold cross validation was applied in order to measure the performance of the 

model. The quantitative evaluation metrics used for this purpose are sensitivity, 

specificity and overall accuracy metrics. These are calculated from the following 

conditions: 

 True Positive (TP): Correctly detected conditions. The result of the test is 

positive and the actual value of the classification is positive. 

 False Positive (FP): Incorrectly detected conditions. The result of the test is 

negative and the actual value of the classification is positive. 

 True Negative (TN): Correctly rejected conditions. The result of the test is 

negative and the actual value of the classification is negative. 

 False Negative (FN): Incorrectly rejected conditions. The result of the test is 

positive and the actual value of the classification is negative. 
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Sensitivity is the proportion of the actual positives that are correctly identified as 

positives by the classifier (Equation (7)). Specificity is the proportion of the actual 

negatives that the classifier successfully valuates as negative (Equation (8)). Overall 

Accuracy refers to the ability of the model to correctly predict the class label of new or 

previously unseen data (Equation (9)). 
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Once the quantitative metrics were obtained, the previously trained SVM classifier is 

used to classify a whole HS cube, and the result was evaluated by neurosurgeons in 

order to analyze the quality of the algorithm in distinguishing different types of tissues, 

materials or substances. 

5.4 HS brain cancer detection algorithm results 

To evaluate the efficiency of the brain cancer detection algorithm described in this 

chapter, a set of five HS images, selected from the database belonging to five different 

patients affected by GBM tumor, were employed. A total of 44,555 labeled spectral 

signatures were used for the training of the supervised classification algorithm. Table 

5-2 summarizes the total number of labeled spectral signatures generated for each 

class, the number of tumor biopsies performed and the number of images captured for 

each patient. 

Table 5-2: Gold standard dataset for the preliminary evaluation of the 

developed brain cancer detection algorithm  

Patient 
ID 

#Image 
ID 

#Tumor 
Biopsies 

Tissue Type (#pixels) 
Total 

(#pixels) Normal 
Tissue 

Tumor 
Tissue 

Blood 
Vessel 

Background 

008 01 2 2,295 1,221 1,331 630 5,477 
012 01 1 4,516 855 8,697 1,685 15,753 
015 01 1 1,251 2,046 4,089 696 8,082 
020 01 1 1,842 3,655 1,513 2,625 9,635 
025 01 1 977 1,221  907 2,503 5,608 

Total (#pixels) 10,881 8,998 16,537 8,139 44,555 

 

5.4.1 Hyperspectral imaging can distinguish tissues by their spectra 

Figure 5-6.a and Figure 5-6.b show the mean and variances of the pre-processed 

spectral signatures of the tumor tissue, normal tissue and blood vessel labeled pixels 

obtained from the gold standard database of patient 8 and 12, respectively. As it can be 

seen in this figure, the shape of the signature depends on the tissue heterogeneity, 

especially in the tumor class. There are some similarities between the spectral signature 

of the blood vessel class and the tumor class that could produce some 

misclassifications, as it will be explained later. However, it is possible to see that the 

differences between the normal class and the tumor class are remarkable. These 
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differences will ensure a successful classification of the normal and tumor pixels by the 

supervised classifier.  

In order to demonstrate that the use of a supervised classifier will achieve a reliable 

differentiation between the labeled pixels that conforms the gold standard database, 

these pixels have been spectrally analyzed employing an SVM classifier.  Afterwards, 

the SVM model generated using the gold standard database for each patient was 

employed to classify the entire HS cube of this patient (intra-patient evaluation). As it 

was previously mentioned, the gold standard information was extracted from the HS 

data using a specific tool developed to this end.   

 

Figure 5-6: Mean and variances of the pre-processed spectral signatures. Tumor, 

normal and blood vessel classes of the labeled pixels from patient 8 (a) and patient 12 (b) are 

represented in red, black and blue color respectively.  

In order to measure the supervised classifier performance and to select the optimal 

configuration of the SVM model, a three-way cross validation was employed. Linear, 

Radial Basis Function (RBF), polynomial and Sigmoid kernels were tested and 

compared. Figure 5-7.a shows the overall accuracy classification results obtained in 

the experiments comparing the four SVM kernels with the default parameters, using 

the labeled dataset for each patient individually and performing the three-way cross 

validation. Linear kernel provides the best accuracy results for this type of sample 

having a lower computational cost than the other kernels exceeding 99% of overall 

accuracy. This indicates that there is a strong reliability on classifying the spectral 

samples of the brain surface using a supervised classifier. Figure 5-7.b and Figure 

5-7.c illustrate the results of specificity and sensitivity metrics respectively with the 

linear kernel for each patient and class using the one-vs.-all method. As it can be seen 

in these figures, the SVM classifier offers specificity and sensitivity results higher than 

96%, reaching in most cases 100% specificity and sensitivity. 
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Figure 5-7: Quantitative results of the supervised classification performed with 

the SVM classifier applied to the labeled data of each patient. (a) Overall accuracy 

results of supervised classification per SVM kernel type and patient; (b) and (c) Specificity 

and sensitivity results obtained using the SVM classifier with linear kernel for each patient 

and class employing the one-vs.-all evaluation method.  

Figure 5-8.a-e show the synthetic RGB images generated from each HS cube where 

the tumor area has been surrounded with a yellow line in each RGB image. Figure 

5-8.f-j show the gold standard maps generated using the labeling tool, where red, 

green, blue and black colors represent the tumor tissue, normal tissue, blood vessels 

and background, respectively. The qualitative results generated by the supervised 

classifier are shown in Figure 5-8.k-o. These supervised classification maps were 
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obtained using the SVM model generated from the gold standard. The color 

representation is the same as the gold standard representation previously introduced, 

except for the blue color representing the hypervascularized tissue presenting on the 

brain surface apart from the blood vessels. In each supervised map, it is possible to 

identify the tumor area. Some false positives can be found in the images. This result is 

produced due to the spectral similarities between the tumor tissue and the main blood 

vessels or areas with extravasated blood in the surgical field as a result of the resection.  

In Figure 5-8.k, the supervised classification map of patient 8 is shown. In this 

result, it can be seen that there are some false positives (delineated by an orange line) 

where a main blood vessel is presented (red area in the center of the image) and near 

other blood vessels far from the tumor area. Furthermore, there is another false 

positive in a small region in the right bottom of the image where the bone of the skull is 

visible (outside of the region where the parenchyma is exposed) due to the extravasated 

blood from the craniotomy. The same effect is observed with patient 15 (Figure 5-8.m) 

where there are some false positives outside of the parenchymal area. Despite these 

false positives, the tumor area is clearly identifiable in each image, and in any case 

blood vessels and extra-parenchymal tissue are very evident to the surgeon during 

resection, so that no diagnostic confusion is likely to happen.  

This first step of the cancer detection algorithm results in the approximate 

identification of the tumor and normal tissue areas using the SVM supervised classifier. 

The next step is to improve the classification maps employing spatial information 

provided by the HS image. 

5.4.2 Improving the spatial coherence of the classification maps 

The supervised classification maps generated in the first step of the cancer detection 

algorithm were improved by combining these results with a one-band representation of 

the HS cube using a KNN filtering method. The one-band representation of the HS 

image, where the most significant information of the image is revealed, were generated 

using the FR-t-SNE algorithm, which offers a high contrast value compared to 

alternative dimensional reduction algorithms.  

Figure 5-8.p-t present the FR-t-SNE one-band representation of each HS cube. In 

these images, it is possible to identify the different areas presenting on the brain 

surface as their borders are highlighted. In these one-band representations, it is 

possible to identify the tumor area in each image. FR-t-SNE results together with the 

probability scores obtained from the supervised classification maps are the inputs for 

the KNN filtering. This filtering process is used to increase the spatial coherence of the 

supervised classification maps, providing the contextual information of each pixel in 

the classification scheme. Figure 5-8.u-z illustrate the spatially optimized 

classification maps obtained after the KNN filtering process. It is apparent that the 

region of each class in the images has been homogenized giving coherence to the 

classification maps.  

Although the differences between the supervised classification maps and the 

spatially optimized classification maps are not very noticeable when looking at the 

resulting images by the naked eye (Figure 5-8.k-o and Figure 5-8.u-z), this is a high 

important task since this homogenization will improve the final stage of the cancer 

detection algorithm, which will assign the classes to the otherwise meaningless clusters 
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provided by the unsupervised clustering algorithm. If the number of pixels that belongs 

to a certain class (tumor, normal, hypervascularized or background) increases or 

decreases in the spatially optimized classification map, the final brain cancer 

classification map could be affected, showing different densities of a certain class in a 

certain region delimited by the unsupervised clustering algorithm. 

 

Figure 5-8: Results of each step of the optimized spatial-spectral supervised 

classification of the five different patients. (a), (b), (c), (d) and (e) Synthetic RGB 

images generated from the HS cubes; (f), (g), (h), (i) and (j) Gold standard maps used for the 

supervised classification training; (k), (l), (m), (n) and (o) Supervised classification maps 

generated using the SVM algorithm; (p), (q), (r), (s) and (t) FR-t-SNE one band 

representation of the HS cubes; (u), (v), (x), (y) and (z) Spatially optimized classification 

maps obtained after the KNN filtering. 

5.4.3 Unsupervised clustering for accurate boundaries delineation  

Figure 5-9.a-e show the segmentation maps generated for each patient employing 

the HKM clustering algorithm. As it can be seen, structures such as blood vessels, 

materials like the ring markers and different tissue regions are delineated by the 

clustering algorithm. Furthermore, the region of interest that is formed by the 

parenchymal area of the brain can be clearly differentiated. Inside this area, some 
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different structures of tissue are highlighted, delimiting with high accuracy the 

boundaries of each region. However, the information provided by the segmentation 

maps is meaningless: the colors that represent each cluster are randomly selected and 

there is no class associated for each cluster. For this reason, it is necessary to combine 

the supervised identified classes with the unsupervised accurate clusters. 

5.4.4 Delimiting and identifying the brain area affected by cancer 

The final stage of the cancer detection algorithm has the goal of combining the 

segmentation map, obtained by the clustering algorithm, and the spatially 

homogenized classification maps, generated after the KNN filtering process, to build 

the final classification map employing the MV algorithm. Figure 5-9.f-j show the MV 

classification map results. These results have been generated applying the maximum 

majority class of the supervised classification map to each cluster of the segmentation 

map. These MV maps provide more accurate results than the spatially optimized 

supervised classification maps. The boundaries of each class region are better 

delineated. In some cases, the tumor area is reduced, having mixed tissue (normal and 

tumor) in the area where only tumor class was presented in the supervised 

classification map (see patient 12, Figure 5-9.g). The same effect is observed in patient 

15, where small islands of normal tissue are found to be mixed in the tumor region (see 

patient 15, Figure 5-9.h). 

 Although this MV classification map provides better delineation of the areas 

affected by cancer on the brain surface, it is possible to have additional hidden 

information in these maps. For example, if a cluster that represents a certain class 

includes a zone with a high percentage (but not the maximum) of another class, this 

information is not revealed in the resulting image. For this reason, another 

visualization of the MV classification map was developed, the One Maximum Density 

(OMD) map. In this case, only the maximum probability results obtained by the MV 

algorithm for each cluster are used to determine the color map, and the color of each 

class is then degraded using the percentage of the probability. For example, if the 

probability of the tumor class for a certain cluster is 80%, the cluster color is degraded 

20% (the cluster RGB color will be R = 0.8, G = 0, B = 0). The color gradient is 

performed only for the tumor tissue, normal tissue and blood vessel/hypervascularized 

tissue classes. The background class is not degraded. Figure 5-9.k-o show the OMD 

maps for each capture, with areas of degraded color. This observation indicates that the 

MV result probability was somewhat lower than for undegraded areas, and may point 

to the presence of different tissue classes merged in this cluster.  

In order to represent the classes that are mixed in a certain cluster, a third map is 

based on the three maximum probability values of the MV results in each cluster. This 

representation, the Three Maximum Density (TMD) map, offers more information 

from the MV results, mixing the color of each class using the percentage of the three 

maximum MV probability values. For instance, if the probability of tumor class for a 

certain cluster is 60%, the probability of normal tissue is 10% and the probability of 

blood vessel/hypervascularized tissue is 30%, the RGB color of the cluster will be R = 

0.6, G = 0.1 and B = 0.3. By employing this technique, it is possible to visualize the 

clusters where their respective mixed classes are hidden. Figure 5-9.p-t show the 

TMD maps of each capture, where clusters that are partially mixed between the classes 

present darker colors. Patient 15 is a good example that contains hidden information in 
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the MV map (Figure 5-9.h). After the generation of the TMD map (Figure 5-9.r), it is 

possible to visualize a new area surrounding the main tumor region represented in 

purple color, which corresponds with hypervascularized tissue with tumor infiltration. 

In this case, the system can estimate the proportion of malignant tissue that is mixed 

with the normal hypervascularized tissue. When the tissue is classified as normal 

(green color), there is no mixture between malignant and normal tissue. When there is 

some minimum amount of malignant tissue, the proportion of malignant tissue is 

showed in the TMD map with a gradient of red color and thus is marked for being 

resected in order to avoid tumor recurrence. 

 

Figure 5-9: Results of each step of the proposed cancer detection algorithm 

applied to the five different patients. (a), (b), (c), (d) and (e) Segmentation maps 

generated using the HKM algorithm; (f), (g), (h), (i) and (j) MV classification maps; (k), (l), 

(m), (n) and (o) OMD maps that take into account only the major probability per class 

obtained from the MV algorithm; (p), (q), (r), (s) and (t) TMD maps that take into account 

the first three major probabilities per class obtained from the MV algorithm. 
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5.5 Conclusions 

In this chapter, a novel approach to classify hyperspectral images for brain cancer 

detection and delineation based on the spatio-spectral properties of HSI has been 

presented. The preliminary results obtained in the supervised classification of the 

tissues that were previously labeled by the specialists, demonstrate that it is possible to 

accurately discriminate between normal tissue, tumor tissue, blood vessels and 

background with an overall accuracy higher than 99% in an intra-patient validation. 

Using the supervised models generated with the labeled data, the entire HS images 

were classified and qualitatively evaluated. Five SVM classification maps obtained from 

five different patients affected by a grade IV GBM tumor were generated. These maps 

can identify the regions where the tumor is located. Employing a spatial-spectral 

optimization method based on a KNN filtering and a FR-t-SNE dimensional reduction, 

the SVM classification maps were spatially homogenized. A clear identification of the 

tumor regions using this spatial-spectral supervised classification maps was provided. 

However, these maps did not offer an accurate delineation of the boundaries. The 

unsupervised stage of the algorithm based on a HKM clustering method provided a 

segmentation map where the boundaries of 24 different regions with similar spectral 

characteristics were delineated. The fusion of the spatial-spectral supervised 

classification map and the unsupervised segmentation map through the MV algorithm 

generated the final classification map, where the boundaries of the different tissues 

materials or substances presented in the image were identified within a certain class. In 

summary, the spatial-spectral classification maps allowed assigning each cluster in the 

segmentation map to an identifiable tissue class.  

Employing the information provided by the MV algorithm, three different ways to 

represent the final results were analyzed. The first one was the MV map to assign the 

maximum probability of each class to each cluster, representing the cluster with the 

correspondent color: red for tumor tissue, green for normal tissue, blue for blood 

vessel/hypervascularized tissue and black for background. On the other hand, the OMD 

map displayed the color of each class degraded according to the value of the first major 

probability. By using this technique, it was possible to identify the clusters that 

conformed only slightly to their assigned class. Finally, the TMD map represented each 

color as a combination between the different classes mixed in a certain cluster. This 

map was the most valuable to the operating neurosurgeon, since it offered the 

possibility to assess the degree of tumor infiltration into the surrounded normal brain. 

This assessment is key for judging the desired extent of resection.  

Although some false positives were encountered in the results, these could be solved 

with further investigations. For instance, there were some misclassifications between 

blood or blood vessels and tumor tissue due to the high intra-class variability between 

the vascularized tissues, although these false positives do not affect the area of 

identified tumor so that the margins of the tumor remained clearly evident. The use of 

an increased database to generate the supervised classification model, where the inter-

patient variability is taken into account, is expected to produce better classification 

results. It is expected that the inclusion of more labeled samples of normal tissue will 

reduce the occurrence of false positives in the results. Furthermore, an extensive 

clinical validation is required to validate if the boundaries of the tumor area 

represented in the TMD map are accurately identified. Several biopsies of the 
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boundaries of tumor area must be obtained and analyzed by the pathologists to certify 

the brain cancer algorithm results.  

On the other hand, there were some misclassifications between different tissues with 

high vascularization. In some cases, extravasated blood and normal tissue affected by 

edema were classified as blood vessel/hypervascularized tissue (blue color). This 

misclassification was produced due to the similar spectral characteristics of the blood 

vessels and the tissue affected by edema. Further investigations, where these spectral 

differences are included in the training of the brain cancer algorithm, could alleviate 

this problem, or perhaps a new class could be created to identify the normal brain with 

high vascularization.     
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Chapter 6: HS brain cancer detection 

algorithm fine-tuning and 

acceleration 

6.1 Introduction 

In this chapter, the optimizations performed to the HS brain cancer detection 

algorithm, developed in Chapter 5, in order to reduce the execution time and to achieve 

more accurate results during surgical procedures are described. Furthermore, a brief 

explanation of the algorithm implementation and acceleration onto the intraoperative 

demonstrator is presented. This implementation was performed in collaboration with 

the research group of Prof. Eduardo Juárez at the CITSEM of the UPM. Finally, in 

order to validate the final intraoperative demonstrator, a set of 4 operations where 

attended with the fully working system to analyze its performance. Part of the work 

performed in this chapter has been reported in [184]–[192]. 

6.2 Evaluation methodology 

This section briefly describes the case studies (CSs) established to evaluate the 

results of the different optimizations performed to the HS brain cancer detection 

algorithm. Three CSs were proposed where each one differs on which patients were 

included as subject of study for the training and testing stages of the algorithm. These 

CSs are defined below. 

Case Study 1 (CS1): The goal of this CS is to check if the discrimination between 

healthy and tumor tissue can be performed using the available labeled data, and 

avoiding the inter-patient variability of data. It means that the datasets explored in this 

CS include HS cubes from surgical operations where both type of tissues, healthy and 

tumor, are present. In order to avoid the inter-patient variability of data, each surgical 

procedure is used independently for training and testing the supervised classifier. 

Case Study 2 (CS2): In CS2, all the available labeled data are merged in a unified 

dataset. It means that a unique database is created by joining all single patient data, so 

the inter-patient variability is taken into account. In this CS it is possible to build a 
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model that aims to discriminate between different types of tumor using a complex label 

scheme based on several patients. 

Case Study 3 (CS3): This case study is the most realistic one. In this approach, 

each surgical procedure data are used as test set of a classification algorithm, and that 

classifier model is built using the information from the rest of HS labeled data 

(belonging to different patients). This case study represents the real case of a new 

operation, where the classification must be performed with a classifier trained with 

previous operations HS data (leave-one-out cross validation). 

6.3 Fine-tuning for surgical-time processing 

The fine tuning performed to the proposed algorithm seeks two main goals: a) 

obtaining more accurate density maps and b) reducing the computational time 

consumed in the algorithm execution. In this chapter, the fine-tuning of the brain 

cancer detection algorithm to achieve surgical real-time processing is presented.  

The results presented in Chapter 5 were obtained using five reference images of five 

different patients affected by GBM tumor and employing the CS1 evaluation method, 

where each HS cube is classified using only its own training samples. In this section, 

the comparison of the results is done using a quantitative and qualitative comparison of 

the results obtained for the same patients and employing also the CS1. The SVM 

classification map (SVM Map), the KNN filtered classification map (KNN Map) and the 

Majority Voting Map (MV Map) were used for the comparison depending on the stages 

that were affected by the algorithm modifications. 

6.3.1 Data pre-processing fine-tuning 

This section provides a comparison study between three different pre-processing 

chains developed to optimize the performance of the algorithm. In this study, the main 

goal is to reduce the computational time required by the algorithm, obtaining as 

accurate results as possible. This optimization will facilitate the real-time processing of 

the HS images during the neurosurgical procedures. Below, each proposed pre-

processing chain is described ranked by complexity level: 

1) CP129: Complete pre-processing chain where all the steps are performed 

(Figure 6-1.a) obtaining as a result a HS cube of 129 bands. This pre-

processing chain is the one that was presented in Chapter 5. 

2) CP128: Complete pre-processing chain applied to the HS cube where the noise 

band split range was modified to obtain a final HS cube formed by 128 bands 

(Figure 6-1.b). This modification was performed to optimize the performance 

of the hardware implementation. Having a pre-processed HS cube where the 

number of bands is integer multiple of 16 allows to more effectively taking 

advantage of the resources of the hardware accelerator employed in the 

algorithm implementation (MPPA Kalray platform). 

3) SP128: Reduced pre-processing chain where the steps of noise filtering 

(HySIME filter and smooth filter) and pixel brightness correction were removed 

(Figure 6-1.c). This low complex pre-processing chain allows reducing 

drastically the computational time consumed in the pre-processing 
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implementation, facilitating the achievement of the goal of obtaining real-time 

processing during neurosurgical procedures. It has been observed that in such 

controlled surgery environment, the noise amount is really low, thus proven the 

noise filtering stage to be unnecessary. 

 
(a) 

 
(b) 

 
(c) 

Figure 6-1: Different data pre-processing chains. a) CP129 pre-processing chain; b) 

CP128 pre-processing chain; c) SP128 pre-processing chain. 

The results obtained at each step of the algorithm employing the CP128 and SP128 

were qualitatively evaluated comparing the classification maps obtained in each step 

against a reference classification map (the results of CP129 in case of CP128 and the 

results of CP128 in case of SP128). For the purpose of finding the best data pre-

processing chain, four HS images were employed (Op8C1, Op12C1, Op15C1 and 

Op20C1).  As an example, Table 6-1 presents the results obtained in the comparison 

between CP128 and SP128 against the reference pre-processing, CP129 and CP128, 

respectively for two images (Op20C1 and Op15C1). The results are presented in two 

different ways. On the one hand, the absolute difference between the results achieved 

with the reduced pre-processing chain is shown. This percentage of difference between 

the reference map and the optimized pre-processing map was calculated by subtracting 

the results of both classification maps. On the other hand, the difference results are 

presented as a binary map, where the pixels whose classification varies when the pre-

processing chain is reduced appear in white. Pixels without any variation appear in 

black. 

As it can be seen in the results, changing the pre-processing chain from CP129 to 

CP128 does not imply a relevant variation of the final results. Only Op15C1 presents a 

noticeable difference of ~17% between de reference and the optimized map. However, 

this difference is produced due to the pixel assignation between the tumor class and the 

hypervascularized class and between the normal class and the hypervascularized class. 

Although there are differences in this capture, the final result obtained by the TMD 

map identifies the tumor area correctly, highlighting the different boundaries in the 

tumor areas. 

The final optimized pre-processing chain (SP128), where the HySIME filter and the 

brightness correction were removed, was compared with the CP128. The comparison 

between CP129 and CP128 was performed before determining that no relevant changes 

are presented in the results. Assuming this, the SP128 is only compared with the 

CP128. The main changes obtained in this optimization are shown also in the Op15C1, 

where especially the normal tissue area is mixed with the hypervascularized class. This 

fact could be produced due to the Op15C1 capture has a highly hypervascularization 

and the tumor was extremely advanced in the brain surface. The employment of this 
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optimized pre-processing chain drastically reduces the computational time required for 

the pre-processing, which is crucial to achieve real-time processing during a 

neurosurgical operation.   

Table 6-1: Pre-processing chains comparison  

Pre-
proc. 

Reference 
Map 

Capture 
ID 

Map 
Type 

Difference 
(%) 

Reference Map Optimized Map 
Difference 

Binary Map 

CP128 CP129 

Op20C1 

SVM  0.87 

   

KNN  0.60 

   

MV  1.09 

   

Op15C1 

SVM  2.56 

   

KNN  2.33 

   

MV  17.06 

   
        

SP128 CP128 

Op20C1 

SVM  2.33 

   

KNN  1.53 

   

MV  1.98 

   

Op15C1 

SVM  4.61 

   

KNN  3.48 

   

MV  14.19 
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6.3.2 Dimensional reduction fine-tuning 

The role of the dimensionality reduction approach in the proposed brain cancer 

detection algorithm is to generate a one-band representation of the HS cube to be used 

as input of the KNN filtering for the spatial homogenization of the SVM classification 

map. In order to reduce the computational time of the spatio-spectral stage of the 

algorithm, the use of PCA algorithm instead of FR-t-SNE was evaluated. Since PCA 

implies lower computational cost than t-SNE, the use of PCA could offer faster 

processing time results in the implementation of the final algorithm achieving thus 

real-time results during the neurosurgical procedure. In this section, the substitution of 

the FR-t-SNE algorithm by the PCA method is analyzed using the evaluation metrics 

employed in the previous section. Only KNN and MV maps were evaluated, as the 

change of the dimensional algorithm does not affect the SVM map.   

In this case, the reference maps were generated by the algorithm using the FR-t-SNE 

dimensional reduction. As it can be seen in Table 6-2, the use of PCA barely affects the 

outputs of the algorithm and only Op20C1 is minimally affected in the majority-voting 

map. This fine-tuning in the brain cancer detection algorithm supposes a speedup in 

the processing time of the algorithm, which helps in the achievement of the real-time 

goal of the application without losing useful information for the neurosurgeon. 

Table 6-2: Dimensional reduction fine-tuning comparison  

Capture ID Map Type 
Difference 

(%) 
Reference Map 
(using FR-t-SNE) 

Optimized Map 
(using PCA) 

Difference 
Binary Map 

Op20C1 

KNN 0.91 

   

MV  0.21 

   

Op15C1 

KNN  1.05 

   

MV  0.00 

   

6.3.3 Dimensional reduction input fine-tuning 

Another part of the algorithm that was studied in order to accelerate its 

implementation was the use of the complete pre-processed HS cube (formed by 128 

bands) instead of the HS cube without the band averaging (formed by 750 bands) as the 

input of the dimensional reduction algorithm. In this case, the use of the same pre-

processed HS cube for each step of the algorithm (PCA, SVM and HKM) allows 

simplifying the algorithm implementation to obtain better computational time results, 

providing also a partial noise reduction. As it will be explained later in Section 6.5, the 

implementation of the algorithm was partitioned into two platforms. The pre-
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processing, the HKM and the MV algorithms were implemented onto the CU of the 

demonstrator, while the PCA, SVM and the KNN filtering were implemented onto the 

HA. The communication between the two platforms was carried out by using an 

Ethernet protocol. The optimization presented in this section was performed so as to 

avoid sending two different HS cubes from the CU to the HA, since this fact drastically 

increases the computational time required by the algorithm for processing the entire 

HS image. Using this optimization, the time total time execution is reduced 

approximately in a 20%. 

Table 6-3 shows the example of the comparison results of this optimization using 

the same metrics previously employed. The reference map was obtained using the HS 

cube without the band averaging applied for the input of the PCA algorithm and the 

complete pre-processed cube, using the SP128 pre-processing chain, for the input of the 

SVM and HKM algorithm. This map is compared with the optimized map, where the 

complete pre-processed HS cube was used as the input for the PCA, SVM and HKM 

algorithms. As it can be seen in the results, in the KNN maps there are some differences 

regarding to the borders of the different classes of the images. However, in the MV 

maps, where the KNN maps are merged with the segmentation maps, there are no 

relevant changes. By assuming these changes, the implementation of the algorithm will 

experiment a high acceleration, allowing the achievement of surgical real-time 

processing. 

Table 6-3: Dimensional reduction input fine-tuning comparison  

Capture ID Map Type 
Difference 

(%) 
Reference Map 

(750 bands) 
Optimized Map 

(128 bands) 
Difference 

Binary Map 

Op20C1 

KNN Map  6.23 

   

MV Map  3.65 

   

Op15C1 

KNN Map  10.81 

   

MV Map  0.00 
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6.3.4 Fine-tuning for real-time processing summary 

After performing the previously described modifications and fine-tuned 

optimizations for the real-time processing of the algorithms, the final brain cancer 

detection algorithm was simplified. Figure 6-2 shows the block diagram of the final 

fine-tuned algorithm for real-time processing. The modifications performed were:  

1) the simplification of the pre-processing chain;  

2) the use of PCA instead of FR-t-SNE;  

3) the use of the complete pre-processed HS cube as the PCA input. 

 

Figure 6-2: Fine-tuned brain cancer detection algorithm for real-time 

processing.   

6.4 Fine-tuning for accurate classification results 

After performing the fine-tuning of the brain cancer detection algorithm to optimize 

the computational time of the implementation, different SVM classifiers were trained 

employing different types and quantities of samples to evaluate the results in CS3. In 

addition, a study of the suitable number of samples that should be used to train the 

SVM algorithm was performed based on CS2. 

6.4.1 SVM training samples percentage evaluation 

In order to determine the suitable percentage of samples of the training database 

that should be used to train the supervised algorithm, several experiments to generate 

and evaluate the supervised model were carried out employing different number of 

training samples. Each experiment was performed following a 10-fold cross-validation 

method to calculate the average overall accuracy result in CS2. Figure 6-3 shows the 

overall accuracy results varying the percentage of training samples with increments of 

2%, starting at 2% and finishing at 100%. The evolution of the overall accuracy shows 

that when more than 75% of the training samples are used, the results stabilize, with 

overall accuracy of around 97.5%. With this experiment, it can be seen that there is no 

overfitting effect and the use of all the training samples will provide the best 

classification map. 
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Figure 6-3: Overall accuracy evolution depending on the percentage of training 

samples employed to generate the supervised classification model of the HS 

brain cancer detection algorithm.   

6.4.2 SVM model generation study 

This section presents the results of the analysis performed to obtain a definitive 

model for the supervised classifier of the final brain cancer detection algorithm. Three 

different SVM models were generated based on the available number of labeled tumor 

samples in the HS database. In these SVM models, the entire labeled samples of normal 

tissue, blood vessels and background elements were employed for the training. Only the 

tumor samples vary in the learning process depending on the SVM model that is going 

to be generated. The proposed SVM models employed to determine their capabilities in 

identifying the tumor margins were the following: 

1) The SVM GBM model was trained using exclusively the labeled samples 

belonging to grade IV GBM.     

2) The SVM Primary model was created using only the labeled samples from 

Primary tumors.     

3) The SVM Brain Tumor model was created using all the available captured 

images where both primary and secondary tumors were labeled.     

These models were generated for each patient following the CS3 approach, where 

there are no samples from the patient who is going to be classified in the training 

dataset. Table 6-4 shows the TMD maps obtained for the test images using each SVM 

model. In the synthetic RGB images, the areas where the tumor is located are 

delineated in yellow. As it can be seen in the results, Op8C1 does not offer good results 

employing any of the SVM models. This fact is mainly caused due to the bad quality of 

the captured image. The focus and illumination of the scene was not optimal during the 

acquisition process. On the other hand, the rest of the images offer promising results 

when the SVM brain tumor model (that employed all the tumor samples available in 

the database) is used. It is worth noting that Op15C1 always presents accurate results. 

This fact indicates that with a high number of tumor samples and more types of 

tumors, the system would be able to identify accurately the tumor boundaries of any 

kind of image. Furthermore, in the RGB representation of the Op20C1 is not possible to 

identify the tumor with the naked eye; however, the brain cancer detection algorithm 

can reveal the tumor area with high precision.  
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Table 6-4: Comparison of the TMD maps obtained with each SVM model 

generated with a leave-one-patient-out cross-validation method. 

Cap. 
ID 

sRGB Image SVM GBM SVM Primary SVM Brain Tumor 

Op8C1 

    

Op12C1 

    

Op15C1 

    

Op20C1 

    

Op25C2 

    

6.5 HS brain cancer algorithm implementation  

This section briefly presents the overall description of the brain cancer algorithm 

implementation onto the intraoperative demonstrator. This algorithm can be divided 

into two main steps: the off-line process and the in situ process. The off-line process is 

the part of the algorithm in which the information previously provided by the experts in 

labeled samples is employed to train the supervised stage (SVM classifier) of the 

algorithm. On the other hand, the in situ process is carried out during surgery inside 

the operating theatre when a new HS image is acquired from the undergoing patient. 

This part of the algorithm is implemented and accelerated using the intraoperative HS 

demonstrator. 
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Figure 6-4.a depicts the different blocks of the HS brain cancer detection 

algorithm, as well as their distribution in the implementation onto both platforms and 

the execution scheduling. Furthermore, the RGB representation of the outputs obtained 

at each step of the algorithm is also shown. The blue block represents the steps of the 

algorithm that were mapped to the CU, while the green block represents the steps 

mapped to the HA. As can be observed, the pre-processing stage, the HKM clustering 

and the MV algorithm are executed on the CU. In contrast, the spatial–spectral 

supervised classification stage, where the PCA, the SVM classification, and the KNN 

filtering are performed, is executed on the HA due to its high computational load. The 

implementation of this algorithms have been reported in several publications [185]–

[192]. 

The data flow sequence of the implementation follows the next steps. Firstly, the raw 

image is pre-processed on the CU and the resulting HS cube is sent to the HA through 

the Gigabit Ethernet interface, to be employed as the input of the PCA and SVM 

classification algorithms. The same HS cube is used in the CU as the input of the HKM 

clustering algorithm. Secondly, HKM clustering is executed on the CU, while the 

spatial–spectral supervised classification—PCA, SVM classification and KNN filtering—

is executed on the HA. Both the unsupervised and the supervised stages are executed 

simultaneously. In addition, the PCA algorithm and the SVM classification are executed 

in parallel in the HA. Finally, once the previous stages are finalized, the MV algorithm 

is executed on the CU to compute the final TMD map. This TMD map is a RGB 

representation of the first three major probabilities per cluster obtained from the HKM 

clustering algorithm, where the brain tumor is marked in red. This image is shown to 

the user (the neurosurgeon) through the HS processing interface. Figure 6-4.b shows 

the different parts that comprise the intraoperative HS demonstrator in relation to HS 

data processing. 

  
(a) (b) 

Figure 6-4: Implementation of the HS brain cancer detection algorithm onto 

the intraoperative demonstrator. (a) HS brain cancer detection algorithm 

implementation flow diagram and the RGB representation of the output of each step; (b) 

Different parts related to the HS data processing of the intraoperative demonstrator.   
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6.6 Intraoperative demonstrator validation 

The validation of the final intraoperative demonstrator was performed during 

neurosurgical operations at the University Hospital Doctor Negrin of Las Palmas de 

Gran Canaria, employing the data of four different patients affected by different types 

of tumors. Table 6-5 details the characteristics of the validation database used to test 

the developed HS brain cancer detection system and their corresponding pathological 

diagnosis. Seven images were included. These images involved normal brain tissue 

acquired during the first stage of the surgical operation, used to test if the system 

included false positives when no tumor as present in the image, and three different 

types of primary tumors.  

Table 6-5: Validation HS image dataset characteristics. 

Image 
ID 

Size 
(MB) 

#Pixels 
Dimension 

(Width × Height × Bands) 
Pathological Diagnosis 

Op35C1 362.62 224,770 495 × 456 × 826 Normal Brain 

Op35C2 197.90 122,670 471 × 262 × 826 Primary Grade II Oligodendroglioma 

Op36C1 225.35 139,682 332 × 423 × 826 Normal Brain 

Op36C2 276.99 171,699 364 × 474 × 826 Primary GBM 

Op37C1 402.26 249,344 513 × 488 × 826 Normal Brain 

Op37C2 230.34 143,560 485 × 296 × 826 Primary GBM 

Op38C1 372.47 230,878 480 × 483 × 826 Primary Grade I Meningioma 

 

The TMD maps of the validation database obtained by the intraoperative 

demonstrator during the surgical operations and their respective synthetic RGB images 

are shown in Figure 6-5 and Figure 6-6. The TMD maps are represented in four 

colors that can be mixed depending on the density of each class presented in the image.  

Figure 6-5 shows the results obtained from the normal brain images. In these 

results, it can be seen that the system does not present any false positives in the 

parenchymal area, and normal tissue and blood vessels are clearly identified. 

Furthermore, bright pixels, which can be found in the images due to the light 

reflections over the arachnoid of the brain or due to the presence of surgical serum in 

the surface, are identified as background pixels. On the other hand, Figure 6-6 shows 

the results obtained from the HS images of the brain surface affected by a tumor, where 

the tumor areas are surrounded with a yellow line in the synthetic RGB 

representations. These results offer a clear indication that the intraoperative 

demonstrator is able to identify the tumor tissue presented in the images. In Figure 

6-6.b, there are some false positives in the bottom corner of the TMD map, however, 

this false information is located outside the area of exposed brain parenchyma and 

thus, it does not affect the neurosurgeon decisions during the tumor resection.  

It is worth noting that two of the cases (Figure 6-6.b and Figure 6-6.d) identify 

two tumor types (grade II oligodendroglioma and grade I meningioma) for which there 

are no spectral signatures within the training database. These results highlight the 

robustness and the generalization capabilities of the intraoperative demonstrator to 

identify other types of tumor rather than only the ones available in the HS training 

database. Finally, it should be mentioned that the tumor identification becomes more 

difficult when the tumor is located deeper in the brain. Figure 6-6.f and Figure 6-6.h 

show the TMD maps of GBM tumors at an advanced stage of the surgical procedure. It 
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can be seen that, in case of Figure 6-6.f, the tumor tissue is clearly identified although 

it is located in a deep layer. However, in Figure 6-6.h, there is no correct identification 

of the tumor tissue due to problems with shadows and the presence of extravasated 

blood in the tumor area. Since HSI is not able to penetrate into the surface, 

extravasated blood present in the image is identified as a hypervascularized tissue class 

(blue color) in the TMD map. 

      
(a) (b) (c) (d) (e) (f) 

Figure 6-5: Normal brain image results obtained from the validation database 

employing the HELICoiD demonstrator. (a) and (b) Synthetic RGB image and TMD 

map of the Op35C1 HS image; (c) and (d) Synthetic RGB image and TMD map of the 

Op36C1 HS image; (e) and (f) synthetic RGB image and TMD map of the Op37C1 HS image.   

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 6-6: Tumor tissue identification results obtained from the validation 

database employing the HELICoiD demonstrator. (a) and (b) synthetic RGB image 

and TMD map of the Op36C2 HS image; (c) and (d) synthetic RGB image and TMD map of 

the Op38C1 HS image; (e) and (f) synthetic RGB image and TMD map of the Op35C2 HS 

image; (g) and (h) synthetic RGB image and TMD map of the Op37C2 HS image.   

Finally, Table 6-6 shows the execution times obtained using the intraoperative 

demonstrator to acquire and process the validation database during surgery. To assess 

the processing times obtained using the hardware acceleration in the spatial-spectral 

supervised classification stage, Table 6-6 also shows the processing times obtained 

when the whole algorithm is implemented in the CPU, i.e., sequential time results. The 

total processing time required in the accelerated version is computed taking into 

account the maximum time obtained between the spatial–spectral supervised 

classification (PCA + SVM + KNN) and the unsupervised clustering (HKM). In 

summary, when the hardware accelerator is not employed, the spatial–spectral 

supervised classification is the most time-consuming stage. In contrast, an average 

speedup factor of 24× is achieved in the spatial–spectral supervised classification stage 

when the hardware accelerator is employed, becoming the unsupervised clustering the 

limiting factor in this case. These results show that the proposed system provides a 
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TMD map of the captured scene during the surgery in approximately 1 min, depending 

on the size of the captured image. 

Table 6-6: Execution time comparison between the sequential (Seq.) and 

accelerated (Acc.) implementations. 

Image ID 
Processing 

Type 
Acquisition 

Time (s) 

Pre-
Processing 

(s) 

Transmission 
(s) 

PCA + 
SVM 
(s) 

KNN (s) 
HKM 

(s) 
MV (s) 

Total 
Processing 

Time (s) 

Op35C1 

Seq. 
19.98 15.07 

0.00 11.32 378.87 
39.68 0.009 

444.95 

Acc. 14.00 6.02 8.16 68.76 * 

Speedup N/A ¥ N/A ¥ 0.00 1.88 46.45 N/A ¥ N/A ¥ 6.47 

Op35C2 

Seq. 
19.02 6.50 

0.00 5.90 196.64 
21.87 0.004 

230.92 

Acc. 7.15 4.35 4.23 35.53 * 

Speedup N/A ¥ N/A ¥ 0.00 1.36 46.44 N/A ¥ N/A ¥ 6.50 

Op36C1 

Seq. 
13.40 9.35 

0.00 6.72 158.66 
24.96 0.005 

199.70 

Acc. 8.07 4.48 3.48 42.38 * 

Speedup N/A ¥ N/A ¥ 0.00 1.50 45.62 N/A ¥ N/A ¥ 4.71 

Op36C2 

Seq. 
14.70 12.59 

0.00 8.96 212.96 
30.45 0.006 

264.97 

Acc. 9.56 5.02 4.66 52.61 * 

Speedup N/A ¥ N/A ¥ 0.00 1.78 45.74 N/A ¥ N/A ¥ 5.04 

Op37C1 

Seq. 
20.71 19.72 

0.00 13.68 434.96 
44.57 0.008 

512.93 

Acc. 13.34 6.72 9.44 77.63 * 

Speedup N/A ¥ N/A ¥ 0.00 2.03 46.10 N/A ¥ N/A ¥ 6.61 

Op37C2 

Seq. 
19.58 8.94 

0.00 7.73 234.90 
25.75 0.005 

277.33 

Acc. 9.45 4.66 5.08 44.15 * 

Speedup N/A ¥ N/A ¥ 0.00 1.66 46.27 N/A ¥ N/A ¥ 6.28 

Op38C1 

Seq. 
19.38 13.84 

0.00 11.49 377.60 
41.59 0.007 

444.52 

Acc. 12.36 6.29 8.15 67.79 * 

Speedup N/A ¥ N/A ¥ 0.00 1.83 46.34 N/A ¥ N/A ¥ 6.56 

* The total time obtained in the accelerated version is computed taking into account the maximum time obtained 
between the spatial-spectral supervised classification and the unsupervised clustering.  
¥ Measurement not available. 

6.7 Conclusions 

 There is a clear trade-off between the complexity of the algorithm and its execution 

time. Some bottlenecks have been identified and evaluated in this chapter. For 

example, the type of pre-processing chain that is applied, or the dimensionality 

reduction technique that is used to guide the spatial homogenization of the final 

classification maps. Although there are some differences between the results obtained 

using the original algorithm compared to the results provided by the simplified version, 

the use of the fine-tuned algorithm provides accurate results in a reduced execution 

time. The tumor regions identified using both versions of the algorithm (original and 

fine-tuned) do not vary significantly.  

In addition, different types of SVM models have been proposed, depending on which 

samples were employed to train the model. It should be taken into account that all the 

experiments carried out in the model study aims to evaluate the detection of tumor 

tissue in a CS3 scenario, what is a realistic situation where the models were trained 

using the samples acquired from previous patients. The capabilities of the algorithm to 

detect the tumor areas using samples from the undergoing patient have been proven in 

Chapter 5. 

As a proof-of-concept, the intraoperative demonstrator developed in this work was 

able to generate thematic maps of the exposed brain surface during surgical operations 

using the fine-tuned HS brain cancer detection algorithm. The implementation of the 
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algorithm was partitioned between the control unit and a hardware accelerator, where 

the higher computational tasks were implemented in a many-core platform to achieve 

intraoperative processing time (~1 min). The demonstrator was validated using seven 

HS images obtained in four neurosurgical operations. The TMD maps obtained 

demonstrate that the system did not introduce false positives in the parenchymal area 

when no tumor was present and it was able to identify different types of tumor that 

were not present in the training database. Further investigations have to be carried out 

in order to enlarge the training database and the validation database with more 

patients and types of tumors. Moreover, an extensive clinical validation of the system 

must be carried out. In this clinical validation, a comprehensive pathological analysis of 

the entire tumor area outlined by the TMD map (especially in the boundaries between 

tumor and the surrounding normal tissue) must be performed as well as to correlate 

the results with the MRI information in order to know if the tumor infiltration into 

normal brain tissue can be properly identified by the system. Additionally, through 

clinical validation, the relation between the improvement of the patient outcomes and 

the use of the system during the surgery should be studied. 
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Chapter 7: Improvement of the 

classification results using Deep 

Learning techniques 

7.1 Introduction 

In the previous chapters, the classification and delineation of the tumor boundaries 

using HSI and a customized brain cancer detection algorithm based on traditional 

machine learning algorithms were investigated. In Chapter 5, quantitative and 

qualitative HSI analysis were accomplished with the goal of delineating tumor 

boundaries and performing an intra-patient validation by employing both the spatial 

and spectral features of HSI. On the other hand, in Chapter 6, qualitative results were 

obtained intraoperatively by performing an inter-patient validation.  

In the study presented in this chapter, the objective is to use deep learning 

algorithms to improve the classification results previously obtained and perform an 

exhaustive quantitative comparison between the different approaches. Furthermore, a 

novel deep learning framework is proposed and mixed with the current HS brain cancer 

detection algorithm to create a surgical aid visualization system capable of identifying 

and detecting the boundaries of brain tumors during surgical procedures using a 

manual tuning of the classification parameters. This tool could assist neurosurgeons in 

the task of identifying the cancer tissue during brain surgery using their criteria to 

select the optimal classification threshold. 

This work has been carried out in a close collaboration with the research group of 

Prof. Baowei Fei at the Department of Bioengineering of the University of Texas at 

Dallas and it has been reported in [193]. 

7.2 Deep learning techniques 

Two deep learning methods were employed in this experiment. On the one hand, a 

2D convolutional neural network (2D-CNN) classifier, selected because of its ability to 

incorporate both spectral and spatial components for machine learning, was 

implemented in a batch-based training approach using TensorFlow on a Titan-XP 

NVIDIA GPU [194]. From each pixel of interest, an 11x11 pixel mini-patch was 
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constructed centered on the pixel of interest. The 2D-CNN was trained with a batch size 

of 12 patches, which were augmented to 96 patches during training by applying 

rotations and vertical mirroring to produce 8 times augmentation. The 2D-CNN 

architecture was based approximately on the AlexNet architecture [195]. This is a basic 

2D-CNN architecture that was intentionally selected to test the ability of a standard 

CNN to solve the problem studied in this work. The details of the architecture are 

presented in Table 7-1. It consisted of three convolutional layers, one average pooling 

layer, and one fully-connected layer. Gradient optimization was applied to the AdaDelta 

optimizer with a learning rate of 1.0 and with 200 and 50 epochs for the training data 

in the binary and multiclass classification, respectively. 

On the other hand, a deep neural network was implemented in TensorFlow on a 

NVIDIA Quadro K2200 GPU and was trained using only the spectral characteristics of 

the HS samples. This 1D-DNN was composed of two hidden layers with 28 and 40 

nodes, respectively, using the rectified linear unit as activation function. The learning 

rate was established as 0.1 and the network was trained for 40 epochs of training data. 

Cross-validation was performed in both algorithms using the leave-one-patient-out 

method and the stop criteria for each training epoch number was based on the 

stabilization of the accuracy to a maximum in the validation group. All parameters were 

maintained for each patient iteration. Furthermore, the training dataset was randomly 

balanced to the class with the minimum number of samples (the tumor class in this 

case). 

Table 7-1:  Schematic of the proposed 2D-CNN architecture. The input size is given 

in each row. The output size is the input size of the next row. All convolutions were 

performed with sigmoid activation and 40% dropout.  

Layer Kernel size / Remarks Input Size 

Conv. 3x3 / ‗same‘ 11x11x128 
Conv. 3x3 / ‗same‘ 11x11x64 
Conv. 3x3 / ‗same‘ 11x11x92 
Avg. Pool 3x3 / ‗valid‘ 11x11x128 
Linear Flatten 9x9x128 
Fully-Conn. - 1x10368 
Linear Logits 1x1000 
Softmax Classifier 1x4 

7.2.1 Proposed deep learning pipeline 

The previously described deep learning methods were combined following the 

framework shown in Figure 7-1. This framework was developed with the goal of 

achieving high accuracy results with a reduced execution time. The proposed 

framework is formed by four main steps: blood vessel detection, parenchymal 

detection, image classification and morphological post-processing. 

Firstly, three spectral channels are selected from the HS cube (             , 

              and              ), where the subscript of each wavelength 

indicates the number of the spectral channel in the spectral signature. These spectral 

channels are linearly combined following Equation (10) to obtain a gray-scale 

representation (I) of the HS cube where the blood vessels are highlighted (Figure 7-2). 

The selection of the most appropriate spectral channels and weights was performed 

empirically, evaluating the contrast of the image by visual inspection. The spectral 

channel     was selected because it presents one of the absorption peaks of hemoglobin 

in the HS image dataset employed in the experiments. Previous works have shown that 
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the hemoglobin concentration absorption peak is normally found between 500 and 590 

nm [196]–[198]. As it can be seen in Figure 7-2,     shows a high contrast between the 

brain tissue and the blood vessels, but background (especially rubber ring markers) and 

the specular glare are indistinguishable with the blood vessels. In order to solve this, 

the spectral channel     is included in the equation, since it provides a higher contrast 

between blood vessels and background. In addition, a reflectance peak of the 

hypervascularized tissue was found in the spectral channel      where differences 

between the brain tissue, background and the blood vessels are highlighted. As 

previously mentioned, these spectral channels were linearly combined, obtaining the 

gray-scale representation image used for the blood vessel and parenchymal area 

detection (Figure 7-1.a). 

                              (10) 

From this image, image patches of 41×41 pixels were generated to be centered on the 

pixel of interest and were classified using the 2D-CNN structure previously presented 

to distinguish between two classes: blood vessels and background. A classification map 

(Figure 7-1.b) is obtained and optimized using a morphological close operation 

followed by a morphological open operation with disk structural element of 1 pixel in 

radius [199]. Similar results were obtained when using multi-band representations for 

this classification problem. However, the gray-scale representation was employed in 

this framework with the goal of achieving real-time processing. 

For identification of the parenchymal area, which corresponds to the primary 

surgical area of exposed brain, the gray-scale representation was used as input of a 2D 

fully-convolutional CNN. The fully-convolutional algorithm implemented was based on 

the U-Net architecture [200], which was trained for 34 epochs of training data on a 

manual segmentation of 20 images, which were augmented by a factor of 8 with 

rotations and reflections. The parenchymal map is obtained after applying a 

morphological close operation followed by a morphological open operation, with a disk 

structural element of 35 pixels in radius, and a hole filling operation (Figure 7-1.c). 

The final model was used to generate the parenchymal maps of 8 testing images, 

achieving a Dice similarity coefficient of 86.5% compared to a manual segmentation 

generated by the operating surgeon.  

In the third step, the HS cube is classified by the 1D-DNN obtaining a 4-class 

classification map (Figure 7-1.d) where the preliminary classification of the normal 

tissue, tumor tissue, blood vessels/hypervascularized tissue and background is 

performed. Then, the blood vessel map is merged to the 1D-DNN classification map 

through a positive mask filling-in and this result is merged with the parenchymal map 

using a negative mask filling-in.  

Finally, in the last step, a morphological open operation, with disk structural 

element of 1 pixel in radius, is performed to generate the final classification map 

(Figure 7-1.e). 
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Figure 7-1: Block diagram of the proposed DL framework.   

 
Figure 7-2: Gray-scale representation image examples and the correspondent 

three selected spectral channels employed in the three-band combination for 

the parenchymal and blood vessel detection.   

7.2.2 DL surgical aid visualization system  

To evaluate the results obtained by the previously presented supervised 

classification framework, a surgical aid visualization system was developed using the 

MATLAB® GUIDE program. In this software, the classification map obtained by the 

1D-DNN can be optimized by adjusting the threshold (operating point) where each 

pixel is assigned to a certain class depending on the probability values obtained for 

each class. Three threshold sliders were used in the visualization system, which offer 

the possibility to adjust and overlap the DNN classification results for the tumor, 

normal and hypervascularized classes, following the same priority order to overlap the 

layers.  

In this surgical aid visualization system, a processing pipeline based on the proposed 

DL framework was implemented (Figure 7-3). This pipeline is able to generate a 

density map where the three classes (normal, tumor, and hypervascularized tissue) are 

represented in gradient colors using the classification map of the DL pipeline and an 

unsupervised segmentation map generated by a clustering algorithm. Concretely, the 
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HS cube is processed by the DL pipeline and a hierarchical K-Means (HKM) algorithm, 

which generate a 4-class classification map (Figure 7-3.a) and an unsupervised 

segmentation map of 24 clusters (Figure 7-3.b), respectively. Both maps are merged 

using a majority voting (MV) algorithm, i.e., all pixels of each cluster on the 

segmentation map are assigned to the most frequent class in the same region of the 

classification map [146]. At this point, a new classification map is obtained where the 

classes are determined by the DL pipeline, and the boundaries of the class regions are 

determined by the HKM map. In addition, a 3-class probability cube is formed by using 

the probability values of each class in each cluster, where the first, second and third 

layers represent the probabilities for the tumor, normal, and hypervascularized classes, 

respectively. The background class is disregarded when performing the gradient 

representation of the colors since it will be always represented in black color. 

Finally, the 3-class probability cube is used to generate the RGB density map where 

each pixel color value (red, green, and blue) is proportionally degraded using the 

probability values of each layer (Figure 7-3.c). The parenchymal map (Figure 7-3.d) 

obtained in the DL pipeline is also used at this point to identify exclusively the 

classification results obtained in the parenchymal area through a negative mask filling-

in method, obtaining the final three class density map (Figure 7-3.e). The algorithm 

for generating the three-class density map was previously reported [146]. However, this 

paper uses the DL architecture instead of the supervised spatial-spectral classifier 

(PCA, SVM and KNN filtering pipeline) as well as the addition of the parenchymal 

detection. 

 

Figure 7-3: Block diagram of the proposed surgical aid visualization algorithm 

to generate the three class density map. A hierarchical K-Means (HKM) algorithm and 

the proposed DL framework were used to generate the maps for majority voting algorithm.   

7.3 Quantitative evaluation 

The validation of the proposed algorithm was performed using inter-patient 

classification (CS3), i.e., training on a group of patient samples that includes all the 

patients except the samples of the patient to be tested (leave-one-out cross-validation). 

Overall accuracy, sensitivity and specificity metrics were calculated to measure the 

performance of the different approaches. These metrics were already defined in Section 

5.3 of Chapter 5. In addition, the receiver operating characteristic (ROC) curve was 

used to obtain the optimal operating point, where the classification offers the best 
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performance for each patient image, and provide the area under the curve (AUC) metric 

in the results.  

To compute all performance metrics, a bootstrapping method was employed to 

produce the evaluation metrics with class-balancing and a confidence range. In this 

method, the class with the lowest number of samples in the test HS image is identified. 

Next, this number of samples is randomly selected with replacement from all remaining 

classes, and the performance metrics are computed. This procedure is repeated 1000 

times, reporting the average value and the 2.5 and 97.5 percentiles to produce the 95% 

confidence interval. This method was used for each iteration of the leave-one-patient-

out cross-validation for the binary mode (tumor and normal samples) and multiclass 

mode (four classes available in the HSI dataset). The class balancing was necessary to 

be performed so that all classes contribute equally to the final metric (AUC, accuracy, 

sensitivity, or specificity), in order to remove bias from the experiment since the classes 

were not originally balanced. Table 7-2 shows the summary of the labeled testing data 

employed for the quantitative and qualitative evaluation of the algorithms. In addition, 

using the classification models generated for each test patient, the classification of the 

entire HS image was performed to evaluate the results qualitatively. In this study, the 

classification and visualization systems were evaluated in eight HS images obtained 

from six GBM patients. The gold standard map of each image was composed by labeled 

pixels of the four classes (normal, tumor, hypervascularized and background), allowing 

the correct computation of the evaluation metrics for each test image performing a 

leave-one-out cross-validation. 

Table 7-2: Summary of the test dataset employed for the quantitative evaluation. 

Patient ID Image ID 
#Labeled Pixels 

NT TT HT BG 

8 
1 2,295 1,221 1,331 630 
2 2,187 138 1,000 7,444 

12 
1 4,516 855 8,697 1,685 
2 6,553 3,139 6,041 8,731 

15 1 1,2º51 2,046 4,089 696 
16 4 1,178 96 1,064 956 
17 1 1,328 179 68 3,069 
20 1 1,842 3,655 1,513 2,625 

Total 8 21,150 11,329 23,803 25,836 

¥ (NT) Normal tissue; (TT) Tumor tissue; (HT) Hypervascularized tissue; (BG) Background. 

In order to evaluate the deep learning methods against traditional SVM-based 

machine learning algorithms, a binary classification, where only the tumor and normal 

samples of the database were employed, was performed. Different configurations of the 

SVM classifier were tested using a binary dataset (tumor vs. normal tissue) to compare 

the performance of the algorithms. Linear and radial basis function (RBF) kernels, with 

the default and optimized hyperparameters, were studied in the binary classification. 

An exhaustive analysis to find the optimal hyperparameters for both kernels was 

accomplished, performing a parameter sweep selecting the value that achieved 

maximum accuracy. Both kernels have a common parameter called cost ( ). This 

parameter is the constant of constraint violation that observes if a data sample is 

classified on the wrong side of the decision limit. The optimal cost value for the both 

kernels was       In addition, RBF kernel has another specific hyperparameter that is 

the width of the Gaussian radial basis function, which can be adjusted by the parameter 

gamma (γ). The optimal pair of values (cost and gamma) for RBF was obtained using a 
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grid search method [201], achieving the maximum accuracy with      and       

The LIBSVM package was employed for the SVM implementation [165]. 

Figure 7-4 shows the average classification results obtained with the six different 

classification approaches. AUC, overall accuracy, sensitivity and specificity metrics and 

their respective 95% confidence interval were computed using the bootstrapping 

method (see Table 7-3). The deep learning methods improve the accuracy and the 

sensitivity compared to the traditional SVM-based machine learning techniques. 

Particularly, the 1D-DNN achieved the best results, obtaining 94% accuracy, 88% 

sensitivity, and an AUC of 0.99. Compared to the best SVM-based method, an 

improvement of 6% in the accuracy is achieved.  

 

Figure 7-4: Average results of the leave-one-out cross-validation of the binary 

dataset obtained for each classification approach using the class-balancing and 

bootstrapping method with the 95% confidence interval.   

 

Table 7-3: Average results of the leave-one-out cross-validation of the binary dataset 

obtained for each classification approach using the bootstrapping method with the 95% 

confidence interval. 

Method 
Average [95% Confidence Interval] 

AUC Accuracy Sensitivity Specificity 

1D-DNN 0.99 [0.99, 0.99] 0.94 [0.94, 0.94] 0.88 [0.88, 0.88] 1.00 [1.00, 1.00] 

2D-CNN 0.97 [0.97, 0.97] 0.88 [0.88, 0.88] 0.76 [0.76, 0.76] 1.00 [1.00, 1.00] 

SVM RBF Opt. 0.97 [0.97, 0.97] 0.84 [0.84, 0.84] 0.68 [0.68, 0.68] 1.00 [1.00, 1.00] 

SVM RBF Def. 0.86 [0.86, 0.86] 0.73 [0.73, 0.73] 0.58 [0.58, 0.58] 0.88 [0.88, 0.88] 

SVM Linear Opt. 0.99 [0.99, 0.99] 0.77 [0.77, 0.77] 0.54 [0.54, 0.54] 1.00 [1.00, 1.00] 

SVM Linear Def. 0.86 [0.86, 0.86] 0.68 [0.68,  0.68] 0.49 [0.49, 0.49] 0.88 [0.88, 0.88] 

 

However, when the four-class dataset is used, the results obtained by both DL 

techniques are quite similar. Figure 7-5 and Table 7-4 and Table 7-5 show the 

average classification results of the multiclass classification with the 95% confidence 

interval. In this case, the overall accuracy obtained with the 2D-CNN and the 1D-DNN 

are similar to the traditional SVM-based approaches; however, the sensitivity of the 

tumor class has been improved by ~16% when using the DL approaches. In this 

particular case of in-vivo tissue, it is a challenging task to achieve a high sensitivity in 

the tumor class. 

In order to combine the strengths of both DL techniques, the proposed deep 

learning framework presented in Section 2.4 was evaluated. Since the main goal of this 
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study is to provide real-time classification during neurosurgical procedures, the 

development of a fast execution algorithm is critical. As seen in Table S2, the 2D-CNN 

offers similar results than the 1D-DNN (77% of overall accuracy). However, the 

required time to transfer and process the HS data by the 2D-CNN (image patches from 

each pixel with a dimension of 11×11×128) is significantly greater than the time 

required by the 1D-DNN, since the 1D-DNN only exploits the spectral information of 

the HS cube (pixel-based approach where each pixel has a dimension of 1×128). 

Therefore, in the proposed framework we use the 1D-DNN as the main classifier, 

including the 2D-CNN to detect the blood vessels in a gray-scale representation of the 

HS cube, using image patches from each pixel with a dimension of 41×41. Furthermore, 

another 2D-Fully-CNN is used to detect the parenchymal area of the exposed brain 

employing the full gray-scale representation image. These intermediate CNN 

classification maps take into account the spatial information required to homogenized 

and reduce the false positives in the multiclass classification result obtained by the 1D-

DNN (Figure 7-1).  

In this sense, the proposed framework achieves an overall accuracy of 80%. AUC 

metrics cannot be obtained for this algorithm since the optimization process (mixing 

the blood vessel and parenchymal maps with the 1D-DNN classification map) is 

performed over the classification map, and the probability map cannot be obtained to 

compute the AUC. Figure 7-5.a shows the average overall accuracy and accuracy per 

class results obtained by each algorithm, and Figure 7-5.b presents the boxplot of the 

overall accuracy results. Although the results obtained are quite similar, it is possible to 

observe that the proposed framework offers a better generalization in the results, 

increasing the overall accuracy of the system. Although the tumor sensitivity results 

obtained in this work need to be further improved, this study shows that DL techniques 

perform better than the traditional SVM-based algorithms.  

For the binary classification scheme, the advantage in performance from the DNN 

compared to all SVM-based algorithms was found to be strongly statistically significant 

(           ), using a paired, one-tailed Student‘s T-test. This relationship was not 

found for the CNN compared to all SVM-based algorithms, despite the increase in 

average performance. Therefore, the method proposed in the paper used the DNN 

approach. Moreover, the difference in performance between the DNN and CNN was not 

found to be statistically significant. Additionally, for the multiclass classification 

scheme, the performance advantage from the proposed algorithm was found to be 

marginally statistically significant compared to the DNN alone, PCA+SVM+KNN, and 

SVM approaches (           ), using a paired, one-tailed Student‘s T-test. 
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(a) 

  
(b) (c) 

Figure 7-5: Average results of the leave-one-out cross-validation of the four-

class dataset obtained for each classification approach using the class-

balancing and bootstrapping method with the 95% confidence interval. (a) 

Overall accuracy and accuracy per class results. (b) Boxplot of the overall accuracy results. 

(c) AUC results per class. [NT] Normal tissue; [TT] Tumor tissue; [HT] Hypervascularized 

tissue; [BG] Background. 

Table 7-4: Average accuracy results of the leave-one-out cross-validation of the four-

class dataset obtained for each classification approach using the bootstrapping method with 

the 95% confidence interval. 

Method 
Average Accuracy [95% Confidence Interval] 

Overall Normal Tumor Hypervascularized Background 

Proposed 0.80 [0.78, 0.81] 0.90 [0.86, 0.93] 0.42 [0.39, 0.45] 0.90 [0.92, 0.89] 0.98 [0.98, 0.98] 

1D-DNN 0.77 [0.75, 0.78] 0.92 [0.88, 0.95] 0.42 [0.39, 0.45] 0.90 [0.92, 0.89] 0.83 [0.82, 0.85] 

2D-CNN 0.77 [0.76, 0.78] 0.88 [0.86, 0.89] 0.40 [0.38, 0.42] 0.87 [0.88, 0.86] 0.93 [0.93, 0.94] 

PCA+SVM+KNN 0.78 [0.76, 0.79] 0.96 [0.93, 0.97] 0.25 [0.23, 0.28] 0.92 [0.93, 0.90] 0.99 [0.97, 0.99] 

SVM Linear Def. 0.77 [0.76, 0.78] 0.95 [0.92, 0.97] 0.26 [0.23, 0.29] 0.91 [0.93, 0.90] 0.96 [0.94, 0.97] 

 
Table 7-5: Average AUC results of the leave-one-out cross-validation of the four-class 

dataset obtained for each classification approach using the bootstrapping method with the 

95% confidence interval. 

Method 
Average AUC [95% Confidence Interval] 

Normal Tumor Hypervascularized Background 

1D-DNN 0.96 [0.95, 0.96] 0.80 [0.78, 0.83] 0.92 [0.91, 0.92] 0.97 [0.97, 0.98] 

2D-CNN 0.95 [0.94, 0.95] 0.87 [0.86, 0.88] 0.97 [0.96, 0.97] 0.98 [0.98, 0.99] 

PCA+SVM+KNN 0.98 [0.98, 0.99] 0.94 [0.92, 0.95] 0.96 [0.95, 0.96] 0.99 [0.98, 0.99] 

SVM Linear Def. 0.98 [0.98, 0.99] 0.90 [0.88, 0.92] 0.97 [0.96, 0.97] 0.99 [0.98, 0.99] 
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7.4 Qualitative evaluation 

Although the tumor sensitivity results obtained in this work need to be further 

improved, this study shows that DL techniques perform better than the traditional 

SVM-based algorithms. Figure 7-6 shows the classification maps and their respective 

tumor sensitivity results (below each map) obtained for four test images, which 

demonstrate that the DL methods significantly improve the results of Patient 20 

(P20C1). Furthermore, the results of Patient 8 (P8C1) demonstrate that the proposed 

DL pipeline (Figure 7-6.f) offers the best results in the detection of the tumor tissue. It 

is worth noticing that this image was captured under non-optimal illumination 

conditions, introducing substantial noise in the HS cube. For this reason, the detection 

of the parenchymal area in this image was not successfully achieved, and the 

classification results include some false positives (mainly misclassifying blood vessels 

with the tumor class). These results were qualitatively evaluated by the operating 

surgeons, who outlined in yellow the approximate tumor area (over the synthetic RGB 

representation, Figure 7-6.a) taking into account the information provided by the 

intraoperative MRI and their knowledge and experience in the field. The results 

obtained with the proposed framework are quite promising, especially in Patient 20, 

where the location of the tumor was extremely difficult to identify using only the naked 

eye. 

Finally, the ROC curves obtained in the basic approaches (Figure 7-5.c and Table 

7-5) show that each class has an optimal operating point where the algorithm is able to 

classify the samples with high accuracy. In this sense, the development of a surgical aid 

visualization system is based on the use of the optimal operating point to generate the 

density maps. Figure 7-6.g shows the density maps of each test image obtained with 

the proposed surgical aid visualization algorithm (Figure 7-3), where the optimal 

operating point was employed to classify each pixel. In these maps, the colors of each 

class were degraded depending on the probability values obtained for each class in each 

cluster. Hence, it is possible to reveal, in some cases, tumor areas that cannot be seen 

directly in the classification map, as well as remove some false positives produced in 

the supervised classification.  

As it can be seen in these results, the predicted tumor area overlaps well with the 

gold standard cancer area (yellow contour in Figure 7-6.a). The ability to accurately 

localize the cancer area can also be seen in the high average AUC values for the tumor 

class ranging from 0.80 to 0.94 for the algorithms tested in this work. The reason for 

the low sensitivities is the large optimal threshold differences between the test patients, 

partially due to the lower number of tumor samples in the training set. Additionally, the 

gold standard used for obtaining the quantitative results did not comprise the entire 

tumor area. Only pixels with high certainty of class membership were selected, which 

could have also contributed to the low sensitivity results that do not accurately reflect 

the efficacy of the proposed method. However, to solve this problem in the proposed 

surgical aid visualization interface, the operating surgeon can visualize multiple 

thresholds to determine the sufficient operating point for the cancer detection. 
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Figure 7-6: Classification maps of four of the test HS images and their 

respective tumor accuracy below each map. (a) Synthetic RGB image with the tumor 

area surrounded by the yellow lines; (b), (c), (d), (e) and (f) Multiclass classification maps 

obtained with the SVM, PCA+SVM+KNN, 2D-CNN, 1D-DNN and the proposed pipeline, 

respectively. Normal, tumor, and hypervascularized tissue are represented in green, red and 

blue colors, respectively, while the background is represented in black color; (g) Density 

maps generated using the surgical aid visualization algorithm with the optimal threshold 

established for the tumor class. In these maps the colors have been adjusted depending on 

the probability values obtained after the majority voting algorithm. 
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  Since the automatic computation of the optimal operating point cannot be 

performed during the surgical procedures due to the absence of a gold standard of the 

undergoing patient, the surgical aid visualization system was developed based on 

manual selection of this operating point. Using the developed user interface (Figure 

7-7), the operating surgeon is able to easily determine the optimal result on the density 

map (Figure 7-7.c) by manually adjusting the threshold values of the tumor, normal, 

and hypervascularized classes. These threshold values establish the minimum 

probability where the pixel must correspond to a certain class in the classification map 

generated by the 1D-DNN (Figure 7-7.b). After that, the overlapping and the majority-

voting algorithms are computed to generate the updated density map. This user 

interface combines the information provided by the HSI processing and the expertise 

and knowledge of the operating surgeon. 

 

Figure 7-7: Surgical aid visualization with manual adjustable threshold values. 

(a) Synthetic RGB image generated from the HSI cube; (b) 1D-DNN classification map 

generated with the established threshold; (c) Density map generated with the new 

classification map.   

7.5 Conclusions 

The work presented in this chapter employs deep learning techniques for the 

detection of in-vivo brain tumors using intraoperative hyperspectral imaging. 

Classification methods using 1D-CNN have been demonstrated to have a high accuracy 

for binary cancer detection in HS images. However, our investigations reveal that both 

spectral-spatial classification with 2D-CNN and pixel-wise classification with 1D-DNN 

perform well within no significant difference in accuracy using a multiclass dataset. We 

believe that the high spectral resolution of the HS cameras used in this study allows the 

1D-DNN to perform with comparable accuracy to CNN methods. Additionally, the 

limited spatial resolution of the push-broom cameras (compared with other spectral-

scanning HS cameras that provide higher spatial resolution) may also reduce the 

performance of CNN methods.  

In addition, a novel classification framework based on a supervised DL pipeline 

combined with an unsupervised classification stage has been proposed. This framework 

was integrated in a user interface with the goal of intraoperatively assisting 
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neurosurgeons during tumor resection, allowing the fine-tuning of the outcome of the 

algorithm. With the goal of achieving surgical-time results in the operating room and 

taking into account that both DL methods obtain similar results, the proposed 

framework uses a DNN for classification because the CNN requires more execution 

time (~1 minute per HS cube) compared to the DNN (~10 seconds per HS cube).  

Moreover, an overall average accuracy of 80% for the proposed method was 

achieved. Since the training dataset had approximately half of the number of samples in 

the tumor class compared to other classes, the number of samples for each class was 

balanced. This reduced the total number of training samples. Additionally, several 

images were out of focus, not fully illuminated, or presented artifacts due to brain 

movement during scanning, so the number of high-quality tumor training samples was 

also limited. In this sense, more data collection with more emphasis on collecting high-

quality tumor samples could help to balance the dataset and produce better training 

paradigms for the proposed algorithm, which could potentially lead to better results. 

In addition, this data increment in the in-vivo HS human brain database could allow 

further experiments, where the possibility of employing a reduced pre-processing 

chain, which only involves the image calibration and normalization, could be evaluated. 

In this way, it may be possible that more advanced deep learning approaches could 

learn how to filter out the noise in the spectral signatures, which could lead to an 

improvement of the sensitivity of the classification results. 

The results of this preliminary study show that deep learning outperforms 

traditional machine learning techniques in the classification of hyperspectral tumor 

samples, although further experiments need to be conducted to optimize the deep 

learning algorithms. It is worth noticing that our proposed approach achieves very high 

specificity for both binary and multiclass classification schemes, obtaining 100% and 

~90%, respectively. These results demonstrate the ability of the proposed approach to 

achieve high confidence in the correct detection of non-tumor areas, which is ideal in 

the design of a surgical aid visualization system. In any case, further experiment should 

be performed to evaluate the ability of the proposed framework to reduce surgical 

resection margins, employing much more patient data and a multi-centered trial. 

However, the outcomes achieved in this preliminary work demonstrate the feasibility of 

using hyperspectral imaging as a promising tool for brain surgical guidance.   
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Chapter 8: Conclusions & Future Lines 

8.1 Conclusions 

Since brain tumors are extremely infiltrative, the task of identifying the boundary 

between the tumor tissue and the normal tissue that surrounds it during a 

neurosurgical operation is extremely difficult for neurosurgeons by only using the 

naked eye. The identification of tumor boundaries and tumor infiltration into normal 

brain tissue is extremely important in order to avoid excessive resection of normal 

brain tissue and to avoid unintentionally leaving behind residual tumor. The current 

tools employed to this end have presented many limitations to assist in the delineation 

of the tumor boundaries. MRI-based neuronavigation accuracy is affected by the brain 

shift during resection and depends on a questionable correlation between the extent of 

enhancement on MRI and cellular infiltration. Other techniques, like 5-ALA 

fluorescence, do not work in low-grade lesions in addition to be highly invasive and not 

recommended for use in children. For these reasons, there is a real need to develop new 

techniques for tumor margin delineation in real-time, maximizing the resection of the 

tumor and minimizing the resection of the adjacent normal brain. In this sense, HSI 

offers a new possibility to address these issues, being a non-contact, non-ionizing and 

non-invasive technique. 

As a proof-of-concept, the work presented in this thesis develops a demonstrator 

capable of generating thematic maps of the exposed brain surface using HS information 

in the VNIR range (between 400 and 1000 nm). The HS images captured by the 

acquisition system were processed by an HS brain cancer detection algorithm based on 

unsupervised and supervised machine learning approaches, providing the classification 

results in surgical time. In these maps, the tumor boundaries can be easily identifiable 

by the neurosurgeon‘s naked eye, differentiating between four different classes: normal 

tissue, tumor tissue, blood vessels/hypervascularized tissue, and background. 

The supervised algorithm was trained by employing a labeled dataset composed of 

more than 300,000 spectral signatures, extracted by medical doctors from 36 different 

HS cubes captured with the acquisition system from 22 different patients from Spain 

and UK. In this work, only the information obtained from the VNIR camera was 

employed to generate the gold standard for the training of the classification algorithm 

and validate its results. Due to the low spatial resolution of the NIR camera, currently it 

is not possible to perform reliable labeling of the NIR HS cubes. Although some 

preliminary analysis of the NIR images performed by this research team [144] reveal 

that the use of the NIR spectral range could help in the identification of blood vessels 
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and extravasated blood, NIR images alone are not relevant for the goal of this study. 

The methodology followed to generate the labeled dataset mainly exploits the spectral 

characteristics of HSI to differentiate between the different types of tissues. 

Intraoperative MRI and the knowledge and experience of the surgeons that participated 

in the project were employed as a guidance tool to identify the suitable areas to be 

labeled in the images. In addition, the pathological analysis results of the tumor tissue 

resected during the surgical procedures were employed to accurately identify the tumor 

areas and type. 

Moreover, due to the difficulties to acquire in-vivo HS images during human 

neurosurgical procedures, during 2 years we were only able to capture the most 

common tumor types that were available during the surgical procedures in both 

participant hospitals. It is an extremely hard task to achieve a comprehensive database 

that covers the entire heterogeneity that could be found across the different patients 

and the different types of brain tumors. For this reason, in this thesis we worked with a 

preliminary database mainly focused to GBM tumors that are the most common type.  

On the other hand, since the customized HS acquisition system is a preliminary 

demonstrator, the system has several limitations. One of them is that the system was 

only able to capture tumor images where the tumor was either on the surface or in a 

deeper layer, but easy enough to be focused and captured. Furthermore, the HS 

pushbroom camera employed for the demonstrator development requires to perform a 

spatial scanning, considerably increasing the acquisition time of the HS image. The 

inherit movement of the undergoing patient‘s brain and also the possible artifacts, 

which can appear in the image (such as extravasated blood or surgical serum) during 

the acquisition, can affect the spatial coherence of the image. In this sense, snapshot 

cameras (HS cameras that are able to acquire both the spatial and spectral features of a 

scene in a single shot) are the most suitable option for this application, achieving real-

time image acquisition. However, the number of spectral bands in these cameras is 

extremely lower compared to pushbroom cameras (~10 times less).  

The development of the HS brain cancer detection algorithm was based in one 

multiclass classifier, generated for the supervised part of the algorithm, employing all 

the tumor types available in the training database to distinguish mainly between tumor 

and normal tissue, without identifying the different types of tumors. The classification 

of secondary tumors and their differentiation with primary tumors were not addressed 

in this thesis due to the reduced number of secondary tumor labeled samples available 

in the HS database. It is not possible to generate a robust and reliable classifier for 

discriminating between secondary and primary tumors because there is little 

availability of metastatic tissue samples, and even the few available ones belong to 

different organs. For this reason, all the experiments presented in this work were 

centered in the detection of primary tumors (mainly GBM).  

Several HS images were employed to evaluate the results obtained with the 

developed algorithms. These images were acquired before and after the beginning of 

the resection. In this last case, the images were captured when part of the tumor had 

been resected from the superficial tumor, or when the normal brain of the surface was 

resected to reveal a deep layer tumor. Due to the procedure carried out to perform the 

resection of the tumor, several effects can be produced in the exposed brain surface. 

These effects could produce misclassifications of the tumor pixels, presenting false 

positives in the classification maps. The effects produced by the resection tools in the 
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normal tissue that surrounds the tumor area, usually produced false positives in these 

areas. Moreover, extravasated blood present in the tumor area also generated problems 

in the classification results. Although the surface of the brain was cleaned before the HS 

image acquisition, the time involved in the acquisition process (~one minute) creates 

the opportunity for extravasated blood in the image if the tumor area is highly 

vascularized. This produces misclassifications, especially between the 

hypervascularized class and the tumor class. Finally, it was more difficult to get high-

quality images when deep-layer tumors were captured due to the limitations of the HS 

acquisition system. Particularly, when the tumor area was captured with a non-optimal 

focus, the spectral signatures of the tumor area were misclassified. In summary, the 

accuracy of the tumor detection was statistically significant when high-quality HS 

images of the tumor exposed in the brain surface were employed. On the other hand, 

the accuracy of the remaining classes (normal tissue, hypervascularized tissue and 

background) was optimal in the majority of the cases. The main problem found here 

was the classification of images that were captured under non-optimal conditions or 

captured after the beginning of the resection, which produces several effects in the 

tissue that surrounds the resected area. Nevertheless, false negatives were also found in 

the classification map results where normal tissue or hypervascularized tissue was 

identified within the tumor area. In this case, due to the multiform nature of the GBM 

tumor, these results should be validated through histopathological analysis in further 

experiments, since it could be possible that in fact were correct classification results. 

Although the algorithm is not capable to accurately identify the tumor area in all 

situations, the work presented in this thesis demonstrates that there are important 

evidences that reveal that the proposed HS brain cancer detection algorithm is a 

valuable resource to this end. Additionally, the final demonstrator was validated using 

seven HS images obtained in four neurosurgical operations that not where included in 

the training database. The thematic maps obtained in this case (see Section 6.6) 

demonstrate that the system did not introduce false positives in the parenchymal area 

when no tumor was present and it was able to identify the location of different types of 

tumor that were not present in the training database. 

Regarding to the implementation of the algorithm onto the intraoperative 

demonstrator, in this thesis it has been presented a preliminary work that 

demonstrates the ability of HSI classification to achieve surgical time execution by 

using a hardware accelerator based on a manycore platform. The algorithm was 

partitioned between the control unit of the demonstrator and the hardware accelerator, 

where the highest computational tasks were implemented, to achieve intraoperative 

processing time (~1 min). Later, these processing time results were improved by 

implementing the entire HS brain cancer detection algorithm onto a high performance 

GPU-based platform (see Annex A). Due to the non-power limitation in the operating 

room, high-power consumption computing platforms are the suitable option to achieve 

real-time execution. In this GPU-based implementation of the HS brain cancer 

algorithm, an average processing time of ~15 seconds was achieved. In addition, a 

preliminary study to compare the performance of the use of deep learning techniques 

instead of traditional machine approaches based on SVM classifiers was performed. As 

it can be seen in the quantitative and qualitative results presented in Chapter 7, deep 

learning techniques outperforms the traditional SVM-based approaches, achieving 

more accurate results in the identification of the tumor samples. It is remarkable that 

the proposed DL pipeline approach achieves a very high specificity for both binary and 
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multiclass classification schemes (100% and ~90%, respectively), demonstrating the 

capability of the algorithm in achieving high confidence in the accurate detection of 

non-tumor areas. In this application, although the binary classification provides better 

results than the multiclass classification, the use of a four-class classification scheme is 

required to provide surgeons with an easily interpretable classification map. In this 

map, the different structures are shown, providing more information about the tissue 

condition thanks to the hypervascularized class. Furthermore, the usage of additional 

classes has been demonstrated to reduce the misclassifications between 

hypervascularized and tumor classes, which can be produced when classifying the 

entire HS cube. On the contrary, the low accuracy obtained for the tumor class (~42%) 

indicates that there was an overall error rate of ~58% in the correct identification of the 

tumor pixels. This result was obtained in multiclass classification, where each class 

accuracy is defined as the sensitivity obtained for that class. This means that, on 

average, the proposed method classifies 58% of the tumor pixels as ―non-tumor‖, i.e. 

the conjunction of the normal, hypervascularized, and background classes. Taking into 

account the results obtained in the binary classification, where only normal brain and 

tumor tissues were classified, the sensitivity and specificity results were 88% and 100%, 

respectively. Therefore, in the multiclass classification, the majority of the 

misclassifications produced in the tumor class were related to the hypervascularized 

and background classes. Mainly, the false negatives obtained in the results were tumor 

pixels assigned to the hypervascularized or background classes. Furthermore, this error 

was higher or lower, depending on the HS image that was classified. In summary, both 

the binary and multiclass classification schemes had very high specificity (100% for 

binary and 90% for multiclass), averaging the accuracy of all the non-tumor classes. 

Therefore, we can conclude that the proposed technique performs well on correctly 

classifying cases of being disease-free. In other words, the method has a high 

confidence for ―ruling in‖ cases of disease [55]. In brain cancer resection, an 

intraoperative guidance system should have a very high specificity to have confidence 

that the areas resected are not normal brain tissue, which is very valuable for better 

patient outcomes. In summary, the work described in this thesis demonstrates that HSI 

can be employed as a new non-invasive and non-ionizing surgical-time aid visualization 

tool that can improve the outcomes of the undergoing patient, assisting neurosurgeons 

in the resection of brain tumors. To the best of our knowledge, there are no other HS 

systems capable of intraoperatively capturing and classify brain cancer HS images.  

8.2 Future lines 

The work presented in this thesis was pioneer in the use of HSI to be employed as an 

aid imaging modality to assist neurosurgeons during brain tumor resections, providing 

a non-contact, non-ionizing and non-invasive intraoperative tool. After the execution of 

this project, several research lines are open to be investigated in the future to improve 

the results achieved.    

 Further data acquisition campaigns must be carried out in order to enlarge the 

training database and the validation database with more patients and types of tumors 

with a more detailed pathological description including molecular profiling. An 

increased HS brain database could be employed to perform further investigations in the 

use of HSI to: 1) identify the different tissue and tumor types; 2) delineate the 
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boundaries of the tumors, parenchyma, blood vessels or other regions of interest for the 

neurosurgeons; 3) provide other kind of information to the surgeons that can be useful 

to improve the outcomes of the surgery.  

Additionally, the fusion of both types of HS images (VNIR and NIR) must be 

investigated in order to demonstrate if the NIR information could help to more 

accurately distinguish the boundaries between the tumor tissue and the surrounding 

hypervascularized normal tissue. On the other hand, an improvement of the acquisition 

system, where the HS camera is able to acquire images in real time, is also required to 

obtain high-quality HS images and perform a study that could demonstrate the ability 

of HSI to provide ongoing feedback during the entire tumor resection process. 

However, for this improvement it is required to reduce the size of the HS cameras and 

also to employ snapshot cameras. Therefore, further investigations must be performed 

by using HS images captured with pushbroom cameras (with high spectral resolution) 

in order to identify the most relevant bands that allow the identification and 

delineation of brain tumors. These results will provide valuable feedback to snapshot 

camera manufacturers that will be able to develop specific HS sensors for this 

particular application, reducing the size, the acquisition time and probably the cost of 

the cameras.  

In addition to this, further investigations must be carried out to implement the new 

proposed deep learning framework onto the demonstrator and evaluate its 

performance for real-time processing during the surgical operations. Furthermore, the 

inclusion of the proposed surgical aid visualization tool in the intraoperative 

demonstrator, which can be used both with the SVM-based and the DL approaches, will 

allow the operating surgeon to visualize different results, manually modified following 

his/her knowledge and experience, to select the more accurate result. This surgical aid 

visualization system combines the information provided by the HSI processing and the 

expertise of the operating surgeon. 

On the other hand, an extensive clinical validation of the intraoperative HS system 

must be carried out, employing much more patient data and a multi-centered trial. In 

this clinical validation, a comprehensive pathological analysis of the entire tumor area 

outlined by the thematic map (especially in the boundaries between tumor and the 

surrounding normal tissue) must be performed as well as to correlate the results with 

the MRI information in order to know if the tumor infiltration into normal brain tissue 

can be properly identified by the system. By using new HS data, the classifiers 

generated with the previously obtained database could be tested without having to 

perform the leave-one-patient-out cross-validation. Additionally, through clinical 

validation, the relation between the improvement of the patient outcomes and the use 

of the system during the surgery could be studied. 

Moreover, further investigations should be done in order to properly correlate the 

biological properties of the different brain tissue types (especially of the different types 

of tumors and normal tissues) with the spectral responses obtained by the HS cameras 

at each wavelength. It has been demonstrated that the differences in the water content 

found in the tumor tissue with respect to the normal tissue can achieve a more accurate 

identification of brain tumors [56]. Raman spectroscopy was employed to study this 

correlation, demonstrating that in the spectral region comprised between 2817–2985 

nm (wavenumber region 3350−3550 cm−1), the water content can be quantified and 

used to discriminate between tumor and normal tissue in oral cancer [57]. Following 
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this approach, the use of HSI should be investigated to demonstrate whether the water 

content of the tumor tissue could be identified and used to improve the accuracy of 

tumor identification at lower wavelengths. On the other hand, same investigations 

should be performed to spectrally analyze the physiological characteristics of 

hemoglobin in the brain surface. The outcomes of this research could lead into a better 

identification of the wavelengths that could be used to improve the discrimination of 

the blood vessels in the brain. Furthermore, this hemoglobin characterization could 

help in the differentiation between the tumor tissue and the surrounded 

hypervascularized normal tissue, improving the delineation of the tumor margins. 

These studies could help in the better discrimination of the different types of tissues, 

providing better outcomes in the delineation and identification of the tumors, 

especially in the surrounding normal tissue infiltrated by the tumor. Specific studies 

should be done to determine these differences and provide a more detailed labeled 

dataset. Although the labeled dataset presented in this work was obtained 

conservatively (only the pixels where the experts were highly confident that belonged to 

a certain class were labeled) using the methodology based on the combination between 

the SAM algorithm and the pathological analysis, a new detailed labeled dataset could 

be used to validate it. In addition, other types of neurosurgical procedures not involving 

brain tumor should be included in further data campaigns in order to obtain a higher 

number of normal tissue samples, ensuring that they are not affected by the infiltrated 

tumor. 

Finally, in this thesis, the classification frameworks were evaluated following a pixel-

by-pixel approach due to the limitations of the in vivo HS brain database. In a pixel-by-

pixel approach, two classifiers could be considered statistically indistinguishable if 

there are two different locations of tumor areas (two tumor sites) in the same image, 

and both classifiers achieve the same accuracy, but identify pixels in different areas. In 

this sense, to find the best classification framework, a site-by-site approach should be 

used to evaluate the results. An aid visualization tool is particularly useful when two or 

more tumor sites need to be classified, and when the accuracy is different at different 

tumor sites. Further experiments should be carried out in this direction using a much 

larger dataset in order to improve the comparison of the classifiers by using a site-by-

site approach.  

Taking into account the previously mentioned limitations, currently, other 

investigations are being carried out by the research team in order to improve the 

outcomes of the work presented in this thesis. Some of the investigations have been 

performed in collaboration with other research groups from several institutions.  

In collaboration with the research group of Prof. Francesco Leporati of the 

Department of Electrical, Computer and Biomedical Engineering at the University of 

Pavia, some works have been carried out to implement the entire HS brain cancer 

detection algorithm based on machine learning techniques onto GPUs (see Annex A). 

Part of this work has been already reported in [202]–[204]. On the other hand, within 

the research group where this thesis has been developed, some other works related with 

the implementation of classification algorithms of HS images have been carried out. 

The use of random forest algorithm is currently studied to be implemented and 

accelerated onto GPUs [205]. In addition, several works are currently on-going related 

with the implementation of the HS brain cancer detection algorithm onto FPGAs. In 

the field of low-power consumption implementations, there are on-going several 
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collaborations with the research group of Dr. Eduardo Juárez from the CITSEM 

(Centro de Investigación en Tecnologías Software y Sistemas Multimedia para la 

Sostenibilidad) at the UPM (Universidad Politécnica de Madrid). 

Currently, some modifications of the HS acquisition system described in this thesis 

are being addressed as part of the new research project ITHaCA (IdenTificacion 

Hiperespectral de tumores CerebrAles - ProID2017010164) achieved by this research 

group. The main modification to be performed over the acquisition system is the 

correct alignment of the two HS cameras (VNIR and NIR) employing two different light 

sources. Having both FOVs of the cameras parallel between them and perpendicular to 

the scene that is going to be captured (the exposed brain in this case), it will be possible 

to obtain both HS images with the same perspective. This will allow using HS image 

fusion algorithms to obtain one HS data cube containing the information provided by 

both cameras (between 400 and 1700 nm). As stated before, the inclusion of the NIR 

information could help in the discrimination of the tumor and hypervascularized tissue, 

which produces the main misclassifications in the current demonstrator.  

In the same direction, a strong collaboration is being carried out with the research 

group of Prof. Baowei Fei from the Quantitative BioImaging Laboratory (QBIL) of the 

University of Texas (UT) at Dallas and UT Southwestern Medical Center. Investigations 

regarding to the use of deep learning algorithms to improve the classification results of 

the traditional machine learning algorithms have been carried out (already presented in 

Chapter 7) [193]. Furthermore, there is a current collaboration where the HS 

acquisition system is going to be replicated at the UT Dallas in order to start an 

acquisition data campaign to acquire new HS brain cancer images at the UT 

Southwestern Medical Center, one of the major medical research institutions of the 

United States. 

In addition, as part of the PhD thesis of Samuel Ortega, one of the researchers of the 

group that was very close involved in the investigations described in this thesis, some 

investigations are being carried out with the goal of applying HSI techniques to 

improve and accelerate the histopathological analysis of tumor samples using a 

customized HS microscope developed to this end. Some preliminary studies performed 

in this area have been already reported [206]–[208]. 
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Annex A: Brain cancer detection 

algorithm implementation and 

acceleration using GPUs 

The brain cancer detection algorithm developed in this thesis was implemented in 

two different hardware accelerators: a manycore-based platform and a GPU-based 

platform. The implementation and acceleration of the algorithm using the manycore-

based platform was performed by Raquel Lazcano and Daniel Madroñal, supervised by 

Dr. Rubén Salvador and Dr. Eduardo Juárez from the UPM in collaboration with the 

ULPGC team. The results of this implementation were already presented in Section 6.5 

of Chapter 6. On the other hand, the GPU-based implementation was performed by 

Giordana Florimbi, Giovanni Rausa and Emanuele Torti, supervised by Prof. Francesco 

Leporati from the Università Degli Studi Di Pavia in collaboration with the ULPGC 

team. Next, a brief summary of this implementation and the achieved results in this 

collaboration will be presented. 

Due to the non-power limitations or restrictions during surgical procedures in an 

operating theatre, it is possible to employ high energy consumption computing 

platforms to achieve real-time execution of the HS brain cancer detection algorithms. 

In this sense, GPUs with high power usage are suitable to achieve real-time 

performance. For this reason, the HS brain cancer detection algorithm described in 

Chapter 5 and fine-tuned in Chapter 6 was implemented onto a CPU-GPU computing 

platform. The dataset employed for the experiments are detailed in Table A-1. 

Table A-1: Details of the HS brain image dataset employed for the implementation 

validation. 

Image ID #Pixel 
Dimensions 

(Width × Height × Bands) 

P8C1 251,532 548×459×826 

P8C2 264,408 552×479×826 

P12C1 219,232 496×442×826 

P15C1 185,368 493×376×826 

P20C1 124,691 329×379×826 

 

Figure A-1 shows the serial CPU implementation of the entire algorithm and the 

data dependencies between the different stages of the algorithm. Solid arrows indicate 
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the sequential execution of each stage, while dashed arrows indicate the data 

transferring between the different stages. As it can be seen, the serial CPU 

implementation starts with the declaration and initialization of the parameters 

employed in each stage and it is followed by the pre-processing stage where the 

calibration and the noise and dimensionality reduction of the HS cube (input data) 

captured by the HS camera are performed. The pre-processed HS cube generated in 

this stage will be employed in three of the next stages of the algorithm (PCA, SVM and 

K-means). The PCA algorithm is the first stage to be executed after finishing the pre-

processing of the input data, in order to obtain a one-band representation of the HS 

cube. This stage is followed by the SVM classification, where a four-class probability 

classification map is obtained. The outputs of the PCA and SVM stages (the one-band 

representation and the four-class probability classification map) are employed as 

inputs in the KNN filter stage, where a spatial homogenization of the SVM probabilities 

is performed, generating a filtered four-class probability classification map. The next 

stage is the unsupervised segmentation performed by executing the K-means 

algorithm. The input of this stage is the pre-processed HS cube and the output is an 

unsupervised segmentation map where 24 spectral regions are grouped and 

differentiated. Finally, the majority voting stage is in charge of merging the results of 

the KNN and the K-means stages (the filtered four-class probability classification map 

and the unsupervised segmentation map) in order to obtain the final density map 

(output data).  

 

Figure A-1: Serial CPU implementation of the HS brain cancer detection 

algorithm. The flow of the serial execution is represented by the black solid arrows and the 

input/output flow is indicated by the colored dashed lines.  

Several tests were performed to achieve the best execution time results with 

different parallel configurations of each independent stage. Each algorithm was 
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analyzed and studied in detail providing the suitable CPU-GPU configuration in each 

case. At the end, the complete system was implemented in two parallel versions, for a 

single-GPU architecture and for a multi-GPU architecture. In both architectures, 

several configurations were tested and in the following paragraphs the best 

configurations for each case are presented. C language was employed for the serial 

implementation, while CUDA programming was used to develop the parallel versions 

[209]. The NVIDIA Tesla K40 GPU was used for the experiments [210].  

Figure A-2 shows the parallel implementation of the HS brain cancer detection 

algorithm for the single-GPU architecture. As it can be seen, all the stages, except the 

majority voting, are mainly executed onto the GPU (also called device). The pre-

processing, SVM and KNN stages are entirely implemented onto the GPU due to the 

speedup achieved is considerably high respect to the CPU implementation. On the 

contrary, the eigenvector computation step of the PCA is executed onto the CPU (also 

called host), since this step offers better results when it is executed out of the GPU. 

Furthermore, for the same reason, the cluster initialization step of the K-means 

algorithm is executed onto the CPU and the results are transferred to the GPU in order 

to complete the K-means stage. At the end, the K-means and the KNN results are 

transferred to the CPU in order to compute the Majority Voting in the host, due to the 

computation of this algorithm is more effective when is performed onto the CPU.  

The total time and speedup results achieved for each independent implementation 

can be seen in Table A-2, where it is possible to observe that the algorithm with the 

highest speedup is the K-Means (average ~100x), followed by the SVM (average ~39x), 

KNN (average ~22x), Pre-processing (average ~3.4x) and PCA (average ~2.3x). Figure 

A-3 graphically shows the results obtained for each parallel implementation of the HS 

brain cancer algorithm compared to the serial implementation. In addition, Table A-3 

details the total time results and speedup achieved with the single-GPU 

implementation in comparison with the serial CPU implementation. In this parallel 

implementation an average speedup of 34.8x is achieved in the execution of the entire 

algorithm (performing the classification in ~15 seconds).  

Table A-2: Execution time comparison between the sequential (Seq.) and accelerated 

(Acc.) implementations of each stage of the algorithm. 

Image 
ID 

Processing 
Type 

Pre-
processing 

PCA SVM KNN K-Means 

P8C1 

Seq. (s) 2.27 2.27 0.27 190.02 214.52 

Acc. (s) 0.59 0.95 0.01 7.63 3.99 

Speedup 3.85x 2.39x 30.00x 24.90x 53.76x 

P8C2 

Seq. (s) 2.31 2.63 0.30 202.41 465.61 

Acc. (s) 0.61 0.97 0.01 8.01 7.45 

Speedup 3.79x 2.71x 33.33x 25.27x 62.50x 

P12C1 

Seq. (s) 1.98 1.98 0.23 146.92 151.50 

Acc. (s) 0.52 0.78 0.01 6.44 2.96 

Speedup 3.81x 2.54x 28.75x 22.81x 51.18x 

P15C1 

Seq. (s) 1.66 1.66 0.20 121.37 162.37 

Acc. (s) 0.47 0.71 0.01 5.57 2.97 

Speedup 3.53x 2.34x 28.57x 21.79x 54.67x 

P20C1 

Seq. (s) 0.78 1.10 0.13 55.91 272.20 

Acc. (s) 0.33 0.61 0.01 2.81 4.52 

Speedup 2.36x 1.80x 26.00x 19.90x 60.22x 
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Figure A-2: Single-GPU parallel implementation of the HS brain cancer 

detection algorithm. The flow of the parallel execution is represented by the black solid 

arrows and the data transfer flow between the host and the device and also between the 

different stages are indicated by the colored dashed lines.  

  
(a) (b) 

Figure A-3: Average parallel implementation results of each stage of the HS 

brain cancer detection algorithm.  (a) Average execution time results. (b) Average 

speedup achieved respect to the serial implementation. 
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Table A-3: Execution time comparison between the sequential (Seq.) and accelerated 

(Acc.) implementations of both GPU-based parallel implementations. 

Image ID Serial (s) 
Single-GPU Multi-GPU 

Time (s) Speedup Time (s) Speedup 

P8C1  600.22 17.95 33.43x 13.45 44.63x 

P8C2  719.31 19.49 36.91x 14.22 50.58x 

P12C1 459.74 14.01 32.81x 11.34 40.55x 

P15C1 387.43 12.02 32.23x 8.99 43.19x 

P20C1 301.17 7.79 38.66x 6.41 46.98x 

 

Regarding to the multi-GPU parallel implementation, Figure A-4 shows the CPU-

GPUs partition between the different stages of the algorithm. In this implementation, 

two NVIDIA Tesla K40 GPUs (device 0 and device 1) were employed to partition the 

algorithms performing a parallel execution between the two devices.  

As it can be seen, the reading of the data is performed in the host and then the input 

data is transferred to the device 0, where the pre-processing stage is executed. The 

output of this stage (the pre-processed HS cube) is then, transferred to the host (GPU-

CPU transferring) and to the device 1 (GPU-GPU transferring). Furthermore, the pre-

processed HS cube is employed in the device 0 for the next stages executed in this 

device.  

After the pre-processing stage, a parallel section is opened. On one hand, in section 

0 (thread 0) of the parallel section, the PCA, SVM and KNN are executed sequentially 

in the device 0 (including the eigenvector computation of the PCA that is executed in 

the host).  On the other hand, the K-means algorithm is executed in section 1 (thread 1) 

onto the host and device 1. After the ending of PCA, SVM, KNN and K-means 

executions, the parallel section is closed and the outputs of the KNN and the K-means 

are transferred to the host from device 0 and device 1, respectively. At the end, the 

Majority Voting algorithm is executed in the host and generates the final density map. 

Table A-3 presents the execution time results achieved by the serial, single-GPU 

and multi-GPU implementations, as well as the speedup obtained by the GPU-based 

implementation regarding to the serial implementation. In average, the multi-GPU 

implementation achieve an speedup of 45.1x respect to the serial implementation, 

classifying the captured HS in ~10 seconds. The average speedup obtained with the 

multi-GPU implementation respect to the single-GPU architecture is ~1.3x.  

In summary, the use of high performance GPU-based implementations for the 

execution of the HS brain cancer detection algorithms outperforms the results obtained 

with the manycore platform, achieving an average speedup of ~4.3x and ~5.7x for the 

single-GPU and multi-GPU architectures, respectively, respect to the manycore 

implementation results obtained in Chapter 6. However, the power consumption 

required by the GPUs is extremely higher than the manycore platform employed in the 

experiments. In any case, in this application, where the system will be employed within 

the operating theater of a Hospital, the power consumption it is not a restriction.  
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Figure A-4: Multi-GPU parallel implementation of the HS brain cancer 

detection algorithm.  The flow of the parallel execution is represented by the black and 

blue solid arrows and the data transfer flow between the host and the devices and also 

between the different stages are indicated by the colored dashed lines. 
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Annex B: Publications 

In this annex, all the scientific communications published during the development 

of the work described in this thesis are detailed. The scientific communications have 

been divided into conference presentations and journal publications and they have 

been organized in chronological order. Furthermore, as part of the outcomes achieved 

during the development of this research project, a patent has been obtained. 
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Annex C: Sinopsis en español 

La imagen hiperespectral es una tecnología que combina dos técnicas que han 

coexistido independientemente durante décadas: la espectroscopia y la fotografía 

digital. Por una parte, la espectroscopia estudia la interacción entre la radiación 

electromagnética y la materia. Dicha interacción es única para cada material. La curva 

que relaciona la radiación electromagnética con un determinado material se denomina 

firma espectral, y a través de su análisis es posible discriminar entre distintos 

materiales. Se trata pues, de una especie de huella digital que identifica cada material. 

Por otro lado, la fotografía digital permite capturar imágenes de una determinada 

escena, haciendo posible el análisis de características espaciales de determinados 

objetos tales como su morfología o su textura.  

La imagen hiperespectral ha sido empleada tradicionalmente para labores de 

teledetección (Remote Sensing), incluyendo diversas aplicaciones como podrían ser la 

agricultura de precisión, la mineralogía o los estudios medioambientales. La 

potencialidad de esta tecnología para diferenciar entre distintos tipos de materiales, ha 

hecho que se empleen en otros campos muy diversos. Por ejemplo, los restauradores de 

obras de arte emplean esta tecnología para identificar qué pigmentos son los que han 

sido empleados en una determinada obra con el fin de mejorar su restauración. Por 

otro lado, en ciertas plantas de reciclaje esta tecnología se emplea para ordenar 

automáticamente los distintos tipos de materiales. En la industria alimentaria, esta 

técnica se emplea para la inspección de la calidad de diferentes alimentos, evitando los 

análisis biológicos invasivos requeridos en las metodologías tradicionales. También en 

la industria farmacéutica se aprovecha de las capacidades de las imágenes 

hiperespectrales para realizar un análisis químico no invasivo, por ejemplo, con el fin 

de diferenciar entre medicamentos originales y de contrabando que, a simple vista, 

parecen idénticos.  

En el campo de la medicina, las imágenes hiperespectrales también han despertado 

el interés de la comunidad científica en los últimos años. Esto se debe a que se ha 

demostrado que la interacción entre la radiación electromagnética y los tejidos 

proporciona información útil para el diagnóstico. En los últimos años el uso de esta 

tecnología ha tenido un gran auge en el campo de la biomedicina, dada su eficacia para 

detectar enfermedades y su carácter no invasivo. Por ejemplo, esta técnica se ha 

utilizado para detectar niveles altos de colesterol del rostro humano o para la detección 

de artritis a través de la inspección de la luz reflejada en la piel. Esta tecnología también 

ha sido empleada para la mejora en la visualización de los vasos sanguíneos o para 

diferenciar automáticamente entre venas y arterias en procedimientos quirúrgicos. Su 
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carácter no invasivo, ha permitido además que esta tecnología se use para medir los 

niveles de oxigenación de la retina, del cerebro o del riñón.  

En lo que respecta a la detección de cáncer, Las imágenes hiperespectrales se 

plantean con el fin de proporcionar a los cirujanos una herramienta de ayuda al 

diagnóstico que permita la resección total del tejido tumoral, así como evitar la 

resección errónea de tejido sano. Se ha descrito su potencial utilidad en la detección de 

diferentes tipos de tumores en animales (cáncer de próstata, cáncer de cabeza y cuello  

o cáncer de mama) y en humanos (cáncer de lengua, tumores de piel o de estómago). 

Uno de los principales beneficios de esta tecnología es que puede utilizarse como 

una herramienta de asistencia visual durante las resecciones de tumores cerebrales. 

Este tipo de tumor se clasifica según su histología y parámetros moleculares, siendo los 

gliomas malignos la forma predominante de tumores cerebrales primarios en adultos, 

que causan entre el 2 y el 3% de las muertes por cáncer en todo el mundo. La cirugía es 

una de las principales opciones de tratamiento para los tumores cerebrales, además de 

la radioterapia y la quimioterapia. Sin embargo, el cirujano a menudo es incapaz de 

distinguir con precisión entre el tumor y el tejido cerebral normal a simple vista debido 

a que los tumores cerebrales se infiltran y difunden en el tejido normal circundante. 

Durante las operaciones neuroquirúrgicas es frecuente que se extraiga demasiado 

tejido cerebral normal (llamado margen de seguridad) o que no se retire del todo el 

tejido tumoral (llamado tumor residual). Varios estudios han demostrado que el tumor 

residual es la causa más común de recurrencia del tumor y es una causa importante de 

morbilidad y mortalidad. En contraste, se ha demostrado que la sobre-resección del 

tejido del tumor cerebral causa daños neurológicos permanentes que afectan la calidad 

de vida de los pacientes. 

Varias herramientas de ayuda al diagnóstico por imagen, como la neuronavegación 

intraoperatoria, la resonancia magnética intraoperatoria (iMRI), el ultrasonido 

intraoperatorio (iUS) y los marcadores tumorales fluorescentes (por ejemplo, ácido 5-

aminolevulínico, 5-ALA), se utilizan comúnmente para ayudar a los cirujanos a delinear 

los tumores cerebrales. No obstante, estas tecnologías tienen varias limitaciones. La 

neuronavegación intraoperatoria se ve afectada por el fenómeno llamado brain shift 

(desplazamiento de la masa cerebral), donde el vínculo de la imagen preoperatoria con 

la posición real del cerebro del paciente se ve afectado por la deformación cerebral 

producida después de la craneotomía y la durotomía. La iMRI extiende 

significativamente la duración de la cirugía (entre 20 y 75 minutos por imagen), 

generando un número limitado de imágenes y requiriendo salas de operaciones 

especiales. Por otro lado, el iUS es barato, obtiene los resultados en tiempo real y no se 

ve afectado por el brain shift. Sin embargo, el uso de iUS puede causar la resección del 

parénquima histológicamente normal. Finalmente, aunque el 5-ALA puede identificar 

los límites del tumor, éste produce efectos secundarios relevantes en el paciente y solo 

se puede utilizar para tumores de alto grado. Por lo tanto, la imagen hiperespectral 

puede ser una prometedora solución para la delimitación intraoperatoria del margen de 

los tumores cerebrales, al ser una modalidad de imagen que no ionizante, no invasiva y 

que no requiere contacto. 

En esta tesis se describen los trabajos desarrollados con el objetivo de resolver los 

problemas expuestos anteriormente relacionados con la detección y delimitación 

intraoperatoria de tumores cerebrales. En estos estudios, se ha investigado el desarrollo 

de algoritmos de aprendizaje de máquina y de aprendizaje profundo que utilizan 
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imágenes hiperespectrales de cáncer cerebral obtenidas in-vivo para identificar los 

márgenes de tumores cerebrales.  

Todos estos estudios fueron realizados dentro del proyecto europeo HELICoiD 

(HypErspectraL Imaging Cancer Detection - 618080) cuyo objetivo principal era 

utilizar imágenes hiperespectrales para generalizar una metodología que permitiera 

discriminar entre tejidos normales y malignos en tiempo real durante procedimientos 

neuroquirúrgicos. Para este propósito, se diseñó y construyó un demostrador 

intraoperatorio capaz de adquirir imágenes intraoperatorias hiperespectrales y 

procesarlas en tiempo real para ayudar a los neurocirujanos durante la resección. Este 

demostrador es capaz de capturar imágenes hiperespectrales en el rango espectral 

comprendido entre 400 y 1700 nm en aproximadamente 2 minutos usando dos 

cámaras tipo pushbroom. El sistema obtiene dos cubos hiperespectrales, uno en el 

rango VNIR (Visual and Near Infrared - 400 a 1000 nm) formado por 826 bandas 

espectrales y una alta resolución espacial de 1004 × 1787 píxeles (129 × 230 mm) y otro 

en el rango NIR (Near Infrared - 900 a 1700 nm) formado por 172 bandas espectrales y 

una baja resolución espacial de 320 × 479 píxeles (153 × 230 mm). Sin embargo, 

únicamente la información del rango VNIR fue empleada para el desarrollo de los 

algoritmos, debido a la baja resolución de la cámara NIR. Esta baja resolución no 

permite hacer un etiquetado fiable con el que realizar el entrenamiento de los 

algoritmos de aprendizaje automático supervisado.  

El sistema de adquisición de HS se evaluó durante procedimientos quirúrgicos en 

dos hospitales diferentes en el Reino Unido y España, obteniendo 80 imágenes 

hiperespectrales de 36 pacientes diferentes en los rangos espectrales VNIR y NIR. Sin 

embargo, en el trabajo realizado en esta tesis solo se empleó la información VNIR, que 

incluyó 44 cubos de 35 pacientes diferentes, debido a la baja resolución de la cámara 

NIR. Esta baja resolución no permite hacer un etiquetado fiable con el que realizar el 

entrenamiento de los algoritmos de aprendizaje automático supervisado. Además, se 

estableció una metodología específica para obtener una base de datos de referencia 

para ser empleada en el desarrollo de los algoritmos hiperespectrales de detección de 

cáncer cerebral. Este conjunto de datos de referencia se generó utilizando una 

herramienta de etiquetado semiautomática basada en el algoritmo SAM (Spectral 

Angle Mapper). La herramienta de etiquetado fue empleada por los especialistas 

(neurocirujanos) para etiquetar 37 imágenes de 22 pacientes diferentes, generando un 

mapa de referencia de cada imagen. En estas imágenes, el tumor y el tejido normal se 

etiquetaron (cuando era posible), así como los vasos sanguíneos y otros tejidos, 

materiales o sustancias que se pueden encontrar en la escena quirúrgica y no son 

relevantes para el procedimiento de resección quirúrgica (llamado background). Este 

conjunto de datos incluye tumores primarios (glioblastoma grado IV y 

oligondendrogliomas anaplásicos de grado III y II) y tumores secundarios (cuyo origen 

era pulmón, riñón y mama). Un total de 377,584 firmas espectrales se incluyeron en el 

conjunto de datos de referencia.  

Utilizando la base de datos obtenida, se desarrolló un algoritmo para clasificar 

imágenes hiperespectrales para la detección y delimitación de cáncer cerebral en 

función de las propiedades espaciales y espectrales de las imágenes hiperespectrales. 

Los resultados preliminares obtenidos en la clasificación supervisada de los tejidos que 

fueron previamente etiquetados por los especialistas, demuestran que es posible 

discriminar con precisión entre tejido normal, tejido tumoral, vasos sanguíneos y fondo 
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con una precisión superior al 99% mediante validación intra-paciente. Utilizando los 

modelos supervisados generados con los datos etiquetados, se clasificaron y evaluaron 

cualitativamente 5 cubo hiperespectrales al completo. Se generaron cinco mapas de 

clasificación con el algoritmo SVM (Support Vector Machine) obtenidos de cinco 

pacientes diferentes afectados por un tumor glioblastoma de grado IV. Estos mapas 

permiten identificar las regiones donde se localiza el tumor. Empleando un método de 

optimización espectral-espacial basado en un filtro KNN (K-Nearest Neighbors) y una 

reducción dimensional de FR-t-SNE (Fixed Reference t-Distributed Stochastic 

Neighbor Embedding), los mapas de clasificación de SVM se homogeneizaron 

espacialmente, obteniendo una identificación clara de las regiones tumorales utilizando 

estos mapas de clasificación supervisados espacial-espectrales. Sin embargo, estos 

mapas no ofrecían una descripción precisa de los límites, por lo que se incluyó una 

etapa no supervisada en el algoritmo basada en el método de agrupamiento HKM 

(Hieararchical k-Means). Éste método proporcionó un mapa de segmentación donde 

se delinearon los límites de 24 regiones diferentes con características espectrales 

similares. La fusión del mapa de clasificación supervisado espacial-espectral y el mapa 

de segmentación no supervisada a través de un algoritmo de votación mayoritaria 

(Majority Voting - MV) generó el mapa de clasificación final, donde los límites de los 

diferentes tejidos, materiales o sustancias presentados en la imagen se identificaron 

dentro de una clase determinada. En resumen, los mapas de clasificación espectral 

espacial permitieron asignar cada grupo en el mapa de segmentación a una clase de 

tejido identificable. 

Empleando la información proporcionada por el mapa final, se analizaron tres 

formas diferentes de representar los resultados finales. El primero fue el mapa de MV, 

donde se asigna la probabilidad máxima de cada clase a cada grupo, representando el 

grupo con el color correspondiente: rojo para el tejido tumoral, verde para el tejido 

normal, azul para el tejido hipervascularizado y negro para el background. Por otro 

lado, el mapa de primera densidad máxima (OMD – One Maximum Density) muestra 

el color de cada clase degradado de acuerdo con el valor de la probabilidad máxima 

para cada clase. Mediante el uso de esta técnica, fue posible identificar los grupos que 

se ajustaban solo ligeramente a su clase asignada. Finalmente, el mapa tres máximas 

densidades (TMD – Three Maximum Density) representa cada color como una 

combinación entre las diferentes clases mezcladas en un cierto grupo. Este mapa es el 

más valioso para el neurocirujano, ya que ofrece la posibilidad de evaluar el grado de 

infiltración del tumor en el tejido cerebral normal circundante. Esta evaluación es clave 

para juzgar la extensión deseada de la resección. 

Como prueba de concepto, el demostrador intraoperatorio desarrollado en este 

trabajo fue capaz de generar mapas temáticos de la superficie cerebral expuesta 

durante las operaciones quirúrgicas utilizando el algoritmo hiperespectral de detección 

de cáncer cerebral in vivo desarrollado y optimizado para su ejecución en tiempo de 

cirugía. La implementación del algoritmo se dividió entre la unidad de control y un 

acelerador de hardware, donde las tareas computacionales más altas se implementaron 

en una plataforma de varios núcleos para lograr un tiempo de procesamiento 

intraoperatorio (~ 1 min). El demostrador se validó utilizando siete imágenes obtenidas 

en cuatro operaciones neuroquirúrgicas. Los mapas de TMD obtenidos demuestran que 

el sistema no introdujo falsos positivos en el área de la parénquima cuando no había 

tumor presente y fue capaz de identificar diferentes tipos de tumores que no estaban 

presentes en la base de datos de entrenamiento. Figure C-1 y Figure C2 muestran el 
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demostrador de HELICoiD, las representaciones RGB sintéticas del cubo HS y los 

mapas temáticos correspondientes obtenidos con este algoritmo para el cerebro normal 

y el cerebro afectado por cáncer, respectivamente. En los mapas temáticos, el tejido 

tumoral se representa en color rojo, el tejido normal en verde, el tejido 

hipervascularizado en azul y el background en negro.  

 
(a) 

      
(b) (c) (d) (e) (f) (g) 

Figure C-1: Demostrador de HELICoiD y resultados obtenidos en imágenes de 

cerebro normal de la base de datos de validación. (a) Demostrador de HELICoiD; (b, 

d, f) Imágenes RGB sintéticas; (c, e, g) Mapas temáticos de la imagen hiperespectral, donde 

el tejido tumoral está representado en color rojo, el tejido normal en verde, el tejido 

hipervascularizado en azul y el background en negro.  

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure C-2: Resultados de identificación del tejido tumoral obtenidos de la base 

de datos de validación empleando el demostrador HELICoiD. (a,c,e,g) Imágenes 

RGB sintéticas; (b,d,f,h) Mapas temáticos de la imagen hiperespectral, donde el tejido 

tumoral está representado en color rojo, el tejido normal en verde, el tejido 

hipervascularizado en azul y el background en negro.  

Finalmente, una de las últimas investigaciones realizadas en esta tesis presentó una 

comparación entre el uso de algoritmos basados en SVM y el uso de algoritmos de 

aprendizaje profundo. Estos experimentos se llevaron a cabo utilizando solo las 

muestras de tumor de glioblastoma disponibles en la base de datos (26 imágenes 

hiperespectrales de 16 pacientes) y teniendo en cuenta la variabilidad inter-paciente 
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mediante el método de validación cruzada. Los resultados obtenidos utilizando 

arquitecturas de aprendizaje profundo fueron altamente prometedores, mejorando la 

precisión de la identificación del tumor en aproximadamente un 16% con respecto a los 

resultados de los algoritmos basados en SVM. Sin embargo, se deben realizar 

investigaciones adicionales para ampliar la base de datos de entrenamiento y la base de 

datos de validación con más pacientes y tipos de tumores. Además, debe realizarse una 

extensa validación clínica del sistema. En esta validación clínica, se debe realizar un 

análisis patológico completo de toda el área del tumor delineada por el mapa de 

clasificación (especialmente en los límites entre el tumor y el tejido normal 

circundante), así como para correlacionar los resultados con la información de la MRI 

(Magnetic Resonance Imaging) para saber si la infiltración del tumor en el tejido 

cerebral normal puede ser identificada adecuadamente por el sistema. Además, a través 

de la validación clínica, se debe estudiar la relación entre la mejoría de los resultados 

del paciente y el uso del sistema durante la cirugía. Por último, deberá estudiarse el uso 

de la información NIR para evaluar si puede ser beneficioso para la mejora de los 

resultados de la clasificación. 



 

~ 135 ~ 

Bibliography 

[1] N. I. for H. and C. Excellence, ―Improving Outcomes for People with Brain and Other 
CNS Tumours,‖ Cancer service guideline [CSG10], 2016. . 

[2] D. N. Louis et al., ―The 2016 World Health Organization Classification of Tumors of the 
Central Nervous System: a summary,‖ Acta Neuropathologica, vol. 131, no. 6. pp. 803–
820, 2016. 

[3] D. K. Robson, ―Pathology & Genetics. Tumours of the Nervous System. World Health 
Organisation Classification of Tumours. P. Kleihues and k. Cavenee (eds). IARC Press, 
Lyon, 2000. No. of pages: 314. ISBN: 92 832 2409 4,‖ J. Pathol., vol. 193, no. 2, p. 276, 
2001. 

[4] W. Stummer et al., ―Counterbalancing risks and gains from extended resections in 
malignant glioma surgery: A supplemental analysis from the randomized 5-
aminolevulinic acid glioma resection study: Clinical article,‖ J. Neurosurg., vol. 114, no. 
3, pp. 613–623, 2011. 

[5] N. Sanai and M. S. Berger, ―Glioma extent of resection and its impact on patient 
outcome,‖ Neurosurgery, vol. 62, no. 4. pp. 753–764, 2008. 

[6] N. Sanai and M. S. Berger, ―Operative Techniques for Gliomas and the Value of Extent of 
Resection,‖ Neurotherapeutics, vol. 6, no. 3, pp. 478–486, 2009. 

[7] K. Petrecca, M. Guiot, V. Panet-Raymond, and L. Souhami, ―Failure pattern following 
complete resection plus radiotherapy and temozolomide is at the resection margin in 
patients with glioblastoma,‖ J. Neurooncol., vol. 111, no. 1, pp. 19–23, 2013. 

[8] I. J. Gerard, M. Kersten-Oertel, K. Petrecca, D. Sirhan, J. A. Hall, and D. L. Collins, 
―Brain shift in neuronavigation of brain tumors: A review,‖ Medical Image Analysis, vol. 
35. pp. 403–420, 2017. 

[9] R. E. Kast et al., ―Raman molecular imaging of brain frozen tissue sections,‖ J. 
Neurooncol., vol. 120, no. 1, pp. 55–62, 2014. 

[10] M. H. T. Reinges et al., ―Course of brain shift during microsurgical resection of 
supratentorial cerebral lesions: Limits of conventional neuronavigation,‖ Acta 
Neurochir. (Wien)., vol. 146, no. 4, pp. 369–377, 2004. 

[11] C. Nimsky, O. Ganslandt, P. Hastreiter, and R. Fahlbusch, ―Intraoperative compensation 
for brain shift,‖ Surg. Neurol., vol. 56, no. 6, pp. 357–364, 2001. 

[12] K. A. Ganser et al., ―Quantification of brain shift effects in MRI images,‖ Biomed. Tech. 
(Berl)., vol. 42 Suppl, pp. 247–248, 1997. 

[13] W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, and H. J. Reulen, 
―Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant 
glioma: a randomised controlled multicentre phase III trial,‖ Lancet Oncol., vol. 7, no. 5, 
pp. 392–401, 2006. 

[14] F. W. Floeth et al., ―Comparison of 18F-FET PET and 5-ALA fluorescence in cerebral 
gliomas,‖ Eur. J. Nucl. Med. Mol. Imaging, vol. 38, no. 4, pp. 731–741, 2011. 



Bibliography 

 

~ 136 ~ 

[15] M. Kamruzzaman and D.-W. Sun, ―Introduction to Hyperspectral Imaging Technology,‖ 
Comput. Vis. Technol. Food Qual. Eval., pp. 111–139, Jan. 2016. 

[16] C. Starr, C. Evers, and L. Starr, Biology: concepts and applications without physiology. 
Cengage Learning, 2010. 

[17] D. Manolakis and G. Shaw, ―Detection Algorithms for Hyperspectral Imaging 
Applications,‖ IEEE Signal Process. Mag., pp. 29–43, 2002. 

[18] M. Govender, K. Chetty, and H. Bulcock, ―A review of hyperspectral remote sensing and 
its application in vegetation and water resource studies,‖ Water SA, vol. 33, no. 2, pp. 
145–152, 2009. 

[19] F. D. van der Meer et al., ―Multi- and hyperspectral geologic remote sensing: A review,‖ 
Int. J. Appl. Earth Obs. Geoinf., vol. 14, no. 1, pp. 112–128, Feb. 2012. 

[20] H. Liang, ―Advances in multispectral and hyperspectral imaging for archaeology and art 
conservation,‖ Appl. Phys. A Mater. Sci. Process., vol. 106, no. 2, pp. 309–323, 2012. 

[21] V. Miljković and D. Gajski, ―Adaptation of industrial hyperspectral line scanner for 
archaeological applications,‖ in International Archives of the Photogrammetry, Remote 
Sensing and Spatial Information Sciences - ISPRS Archives, 2016, vol. 41, pp. 343–345. 

[22] W. Fortunato de Carvalho Rocha, G. P. Sabin, P. H. Março, and R. J. Poppi, ―Quantitative 
analysis of piroxicam polymorphs pharmaceutical mixtures by hyperspectral imaging 
and chemometrics,‖ Chemom. Intell. Lab. Syst., vol. 106, no. 2, pp. 198–204, Apr. 2011. 

[23] L. de M. França, M. F. Pimentel, S. da S. Simões, S. Grangeiro, J. M. Prats-Montalbán, 
and A. Ferrer, ―NIR hyperspectral imaging to evaluate degradation in captopril 
commercial tablets,‖ Eur. J. Pharm. Biopharm., vol. 104, pp. 180–188, Jul. 2016. 

[24] G. J. Edelman, E. Gaston, T. G. van Leeuwen, P. J. Cullen, and M. C. G. Aalders, 
―Hyperspectral imaging for non-contact analysis of forensic traces,‖ Forensic Science 
International, vol. 223, no. 1–3. pp. 28–39, 2012. 

[25] C. S. Silva, M. F. Pimentel, R. S. Honorato, C. Pasquini, J. M. Prats-Montalbán, and A. 
Ferrer, ―Near infrared hyperspectral imaging for forensic analysis of document forgery,‖ 
Analyst, vol. 139, no. 20, pp. 5176–5184, Jul. 2014. 

[26] M. Á. Fernández de la Ossa, J. M. Amigo, and C. García-Ruiz, ―Detection of residues 
from explosive manipulation by near infrared hyperspectral imaging: A promising 
forensic tool,‖ Forensic Sci. Int., vol. 242, pp. 228–235, Sep. 2014. 

[27] P. W. Yuen and M. Richardson, ―An introduction to hyperspectral imaging and its 
application for security, surveillance and target acquisition,‖ Imaging Sci. J., vol. 58, no. 
5, pp. 241–253, 2010. 

[28] V. C. Coffey, ―Hyperspectral Imaging for Safety and Security,‖ Opt. Photonics News, vol. 
26, no. 10, p. 26, Oct. 2015. 

[29] M. Teke, H. S. Deveci, O. Haliloglu, S. Z. Gurbuz, and U. Sakarya, ―A short survey of 
hyperspectral remote sensing applications in agriculture,‖ 2013 6th Int. Conf. Recent 
Adv. Sp. Technol., pp. 171–176, 2013. 

[30] L. M. Dale et al., ―Hyperspectral imaging applications in agriculture and agro-food 
product quality and safety control: A review,‖ Appl. Spectrosc. Rev., vol. 48, no. 2, pp. 
142–159, Mar. 2013. 

[31] D. Wu and D.-W. Sun, ―Advanced applications of hyperspectral imaging technology for 
food quality and safety analysis and assessment: A review—Part I: Fundamentals,‖ 
Innov. Food Sci. Emerg. Technol., vol. 19, pp. 1–14, 2013. 

[32] Y.-Z. Feng and D.-W. Sun, ―Application of Hyperspectral Imaging in Food Safety 
Inspection and Control: A Review,‖ Crit. Rev. Food Sci. Nutr., vol. 52, no. 11, pp. 1039–
1058, Nov. 2012. 

[33] D. Lorente, N. Aleixos, J. Gómez-Sanchis, S. Cubero, O. L. Garc\‘\ia-Navarrete, and J. 
Blasco, ―Recent Advances and Applications of Hyperspectral Imaging for Fruit and 
Vegetable Quality Assessment,‖ Food Bioprocess Technol., vol. 5, no. 4, pp. 1121–1142, 
Nov. 2011. 



Bibliography 

 

~ 137 ~ 

 

[34] G. Lu and B. Fei, ―Medical hyperspectral imaging: a review.,‖ J. Biomed. Opt., vol. 19, no. 
1, p. 10901, 2014. 

[35] M. A. Calin, S. V. Parasca, D. Savastru, and D. Manea, ―Hyperspectral imaging in the 
medical field: Present and future,‖ Appl. Spectrosc. Rev., vol. 49, no. 6, pp. 435–447, 
2014. 

[36] A. Bjorgan, M. Denstedt, M. Milanič, L. A. Paluchowski, and L. L. Randeberg, ―Vessel 
contrast enhancement in hyperspectral images,‖ in Optical Biopsy XIII: Toward Real-
Time Spectroscopic Imaging and Diagnosis, 2015. 

[37] H. Akbari, Y. Kosugi, K. Kojima, and N. Tanaka, ―Blood vessel detection and artery-vein 
differentiation using hyperspectral imaging,‖ in Proceedings of the 31st Annual 
International Conference of the IEEE Engineering in Medicine and Biology Society: 
Engineering the Future of Biomedicine, EMBC 2009, 2009, pp. 1461–1464. 

[38] H. Akbari, Y. Kosugi, K. Kojima, and N. Tanaka, ―Detection and Analysis of the Intestinal 
Ischemia Using Visible and Invisible Hyperspectral Imaging,‖ IEEE Trans. Biomed. 
Eng., vol. 57, no. 8, pp. 2011–2017, 2010. 

[39] D. J. Mordant et al., ―Spectral imaging of the retina,‖ Eye, vol. 25, no. 3, pp. 309–320, 
Mar. 2011. 

[40] W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, ―Snapshot 
hyperspectral imaging in ophthalmology,‖ J. Biomed. Opt., 2007. 

[41] L. Gao, R. T. Smith, and T. S. Tkaczyk, ―Snapshot hyperspectral retinal camera with the 
Image Mapping Spectrometer (IMS),‖ Biomed. Opt. Express, vol. 3, no. 1, p. 48, Jan. 
2012. 

[42] M. Milanic, A. Bjorgan, M. Larsson, T. Strömberg, and L. L. Randeberg, ―Detection of 
hypercholesterolemia using hyperspectral imaging of human skin,‖ in Clinical and 
Biomedical Spectroscopy and Imaging IV, 2015. 

[43] L. Zhi, D. Zhang, J. qi Yan, Q. L. Li, and Q. lin Tang, ―Classification of hyperspectral 
medical tongue images for tongue diagnosis,‖ Comput. Med. Imaging Graph., vol. 31, no. 
8, pp. 672–678, 2007. 

[44] D. Yudovsky, A. Nouvong, and L. Pilon, ―Hyperspectral Imaging in Diabetic Foot Wound 
Care,‖ J. Diabetes Sci. Technol., vol. 4, no. 5, pp. 1099–1113, Sep. 2010. 

[45] M. Knauth, C. R. Wirtz, V. M. Tronnier, N. Aras, S. Kunze, and K. Sartor, ―Intraoperative 
MR imaging increases the extent of tumor resection in patients with high-grade 
gliomas,‖ Am. J. Neuroradiol., 1999. 

[46] T. Chowdhury et al., ―The Role of Intraoperative MRI in Awake Neurosurgical 
Procedures: A Systematic Review.,‖ Front. Oncol., vol. 8, p. 434, 2018. 

[47] R. M. Young, A. Jamshidi, G. Davis, and J. H. Sherman, ―Current trends in the surgical 
management and treatment of adult glioblastoma.,‖ Ann. Transl. Med., 2015. 

[48] A. G. Chacko, N. K. S. Kumar, G. Chacko, R. Athyal, V. Rajshekhar, and G. Unsgaard, 
―Intraoperative ultrasound in determining the extent of resection of parenchymal brain 
tumours - A comparative study with computed tomography and histopathology,‖ Acta 
Neurochir. (Wien)., 2003. 

[49] M. a Hammoud, B. L. Ligon, R. elSouki, W. M. Shi, D. F. Schomer, and R. Sawaya, ―Use 
of intraoperative ultrasound for localizing tumors and determining the extent of 
resection: a comparative study with magnetic resonance imaging.,‖ J. Neurosurg., 1996. 

[50] F. Prada et al., ―Intraoperative contrast-enhanced ultrasound for brain tumor surgery,‖ 
Neurosurgery, 2014. 

[51] A. V. Moiyadi and P. Shetty, ―Direct navigated 3D ultrasound for resection of brain 
tumors: a useful tool for intraoperative image guidance,‖ Neurosurg. Focus, 2016. 

[52] W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, and H. J. Reulen, 
―Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant 
glioma: a randomised controlled multicentre phase III trial,‖ Lancet Oncol., vol. 7, no. 5, 
pp. 392–401, 2006. 



Bibliography 

 

~ 138 ~ 

[53] W. Stummer et al., ―Intraoperative detection of malignant gliomas by 5-aminolevulinic 
acid- induced porphyrin fluorescence,‖ Neurosurgery, vol. 42, no. 3, pp. 518–526, 1998. 

[54] T. Adão et al., ―Hyperspectral imaging: A review on UAV-based sensors, data processing 
and applications for agriculture and forestry,‖ Remote Sens., vol. 9, no. 11, 2017. 

[55] N. Hagen and M. W. Kudenov, ―Review of snapshot spectral imaging technologies,‖ Opt. 
Eng., 2013. 

[56] M. Li, S. Zang, B. Zhang, S. Li, and C. Wu, ―A review of remote sensing image 
classification techniques: The role of Spatio-contextual information,‖ Eur. J. Remote 
Sens., 2014. 

[57] M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, ―Advances in 
spectral-spatial classification of hyperspectral images,‖ Proc. IEEE, vol. 101, no. 3, pp. 
652–675, 2013. 

[58] G. Cano et al., ―Automatic selection of molecular descriptors using random forest: 
Application to drug discovery,‖ Expert Syst. Appl., vol. 72, pp. 151–159, 2017. 

[59] T. Puchert, D. Lochmann, J. C. Menezes, and G. Reich, ―Near-infrared chemical imaging 
(NIR-CI) for counterfeit drug identification: A four-stage concept with a novel approach 
of data processing (Linear Image Signature),‖ J. Pharm. Biomed. Anal., vol. 51, no. 1, pp. 
138–145, 2010. 

[60] A. Gowen, C. Odonnell, P. Cullen, G. Downey, and J. Frias, ―Hyperspectral imaging-an 
emerging process analytical tool for food quality and safety control,‖ Trends Food Sci. 
Technol., vol. 18, no. 12, pp. 590–598, 2007. 

[61] Y. Montembeault, P. Lagueux, V. Farley, A. Villemaire, and K. C. Gross, ―Hyper-Cam: 
Hyperspectral IR imaging applications in defence innovative research,‖ in 2010 2nd 
Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote 
Sensing, 2010. 

[62] P. Fisher, ―The pixel: A snare and a delusion,‖ Int. J. Remote Sens., 1997. 

[63] C.-I. Chang, Hyperspectral imaging: techniques for spectral detection and 
classification, vol. 1. Springer Science & Business Media, 2003. 

[64] H. F. Grahn and P. Geladi, Eds., Techniques and Applications of Hyperspectral Image 
Analysis. Chichester, UK: John Wiley & Sons, Ltd, 2007. 

[65] L. Zhang, L. Zhang, and B. Du, ―Deep learning for remote sensing data: A technical 
tutorial on the state of the art,‖ IEEE Geosci. Remote Sens. Mag., 2016. 

[66] T. G. Dietterich, ―Ensemble Methods in Machine Learning,‖ in Multiple Classifier 
Systems, Springer Nature, 2000, pp. 1–15. 

[67] J. C.-W. Chan and D. Paelinckx, ―Evaluation of Random Forest and Adaboost tree-based 
ensemble classification and spectral band selection for ecotope mapping using airborne 
hyperspectral imagery,‖ Remote Sens. Environ., vol. 112, no. 6, pp. 2999–3011, Jun. 
2008. 

[68] J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, ―Classification of hyperspectral 
data from urban areas based on extended morphological profiles,‖ IEEE Trans. Geosci. 
Remote Sens., vol. 43, no. 3, pp. 480–491, Mar. 2005. 

[69] H. Akbari, Y. Kosugi, K. Kojima, and N. Tanaka, ―Wavelet-Based Compression and 
Segmentation of Hyperspectral Images in Surgery,‖ in Lecture Notes in Computer 
Science, Springer Nature, pp. 142–149. 

[70] F. Blanco, M. López-Mesas, S. Serranti, G. Bonifazi, J. Havel, and M. Valiente, 
―Hyperspectral imaging based method for fast characterization of kidney stone types,‖ J. 
Biomed. Opt., vol. 17, no. 7, p. 760271, Jul. 2012. 

[71] G. Camps-Valls and L. Bruzzone, ―Kernel-based methods for hyperspectral image 
classification,‖ IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351–1362, Jun. 
2005. 

[72] Y. D. Zhang et al., ―Facial emotion recognition based on biorthogonal wavelet entropy, 



Bibliography 

 

~ 139 ~ 

 

fuzzy support vector machine, and stratified cross validation,‖ IEEE Access, vol. 4, pp. 
8375–8385, 2016. 

[73] Y. Zhang et al., ―Comparison of machine learning methods for stationary wavelet 
entropy-based multiple sclerosis detection: decision tree, k-nearest neighbors, and 
support vector machine,‖ Simulation, vol. 92, no. 9, pp. 861–871, 2016. 

[74] S. Wang et al., ―Wavelet entropy and directed acyclic graph support vector machine for 
detection of patients with unilateral hearing loss in MRI scanning,‖ Front. Comput. 
Neurosci., vol. 10, no. OCT, pp. 1–11, 2016. 

[75] V. Dey, Y. Zhang, and M. Zhong, ―A review on image segmentation techniques with 
remote sensing perspective,‖ ISPRS TC VII Symp. – 100 Years ISPRS, 2010. 

[76] S. Theodoridis and K. Koutroumbas, ―Clustering Algorithms I: Sequential Algorithms,‖ 
in Pattern Recognition, 2009. 

[77]  a Moore, ―K-means and Hierarchical Clustering,‖ Stat. Data Min. Tutorials, 2001. 

[78] F. Zhang, B. Du, L. Zhang, and L. Zhang, ―Hierarchical feature learning with dropout k-
means for hyperspectral image classification,‖ Neurocomputing, 2016. 

[79] G. H. Ball and D. J. Hall, ―ISODATA, a novel method of data analysis and pattern 
classification,‖ Analysis, 1965. 

[80] S. A. El-Rahman, ―Hyperspectral imaging classification using ISODATA algorithm: Big 
data challenge,‖ in Proceedings - 2015 5th International Conference on e-Learning, 
ECONF 2015, 2016. 

[81] S. Narumalani, D. R. Mishra, J. Burkholder, P. B. T. Merani, and G. Willson, ―A 
comparative evaluation of ISODATA and spectral angle mapping for the detection of 
saltcedar using airborne hyperspectral imagery,‖ Geocarto Int., 2006. 

[82] Y. Zhao and G. Karypis, ―Hierarchical clustering algorithms for document datasets,‖ 
Data Min. Knowl. Discov., 2005. 

[83] S. C. Johnson, ―Hierarchical clustering schemes,‖ Psychometrika, 1967. 

[84] N. Gillis, D. Kuang, and H. Park, ―Hierarchical clustering of hyperspectral images using 
rank-two nonnegative matrix factorization,‖ IEEE Trans. Geosci. Remote Sens., 2015. 

[85] K. Arai and A. R. Barakbah, ―Hierarchical K-means: an algorithm for centroids 
initialization for K-means,‖ Rep. Fac. Sci. Engrg. Reports Fac. Sci. Eng. Saga Univ. 
Saga Univ., 2007. 

[86] A. Banerjee, I. Dhillon, J. Ghosh, and S. Sra, ―Generative model-based clustering of 
directional data,‖ in Proceedings of the ninth ACM SIGKDD international conference on 
Knowledge discovery and data mining, 2003, pp. 19–28. 

[87] K. Masood, N. Rajpoot, K. Rajpoot, and H. Qureshi, ―Hyperspectral Colon Tissue 
Classification using Morphological Analysis,‖ in International Conference on Emerging 
Technologies, 2006, pp. 735–741. 

[88] B. Regeling et al., ―Hyperspectral Imaging Using Flexible Endoscopy for Laryngeal 
Cancer Detection,‖ Sensors, vol. 16, no. 8, p. 1288, 2016. 

[89] Y. A. LeCun, Y. Bengio, and G. E. Hinton, ―Deep learning,‖ Nature, 2015. 

[90] G. Hinton, ―Deep belief networks,‖ Scholarpedia, vol. 4, no. 5, p. 5947, 2009. 

[91] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ―Gradient-based learning applied to 
document recognition,‖ Proc. IEEE, 1998. 

[92] Y. LeCun et al., ―Backpropagation Applied to Handwritten Zip Code Recognition,‖ 
Neural Comput., 1989. 

[93] T. Li, J. Zhang, and Y. Zhang, ―Classification of hyperspectral image based on deep belief 
networks,‖ in 2014 IEEE International Conference on Image Processing (ICIP), 2014, 
pp. 5132–5136. 

[94] K. Makantasis, K. Karantzalos, A. Doulamis, and N. Doulamis, ―Deep Supervised 
Learning for Hyperspectral Data Classification through Convolutional Neural Networks,‖ 



Bibliography 

 

~ 140 ~ 

IGARSS 2015. 2015 IEEE Int. Geosci. Remote Sens. Symp. Proc. \, 2015. 

[95] W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, ―Deep convolutional neural networks for 
hyperspectral image classification,‖ J. Sensors, 2015. 

[96] J. Yue, W. Zhao, S. Mao, and H. Liu, ―Spectral-spatial classification of hyperspectral 
images using deep convolutional neural networks,‖ Remote Sens. Lett., 2015. 

[97] W. Zhao and S. Du, ―Spectral-Spatial Feature Extraction for Hyperspectral Image 
Classification: A Dimension Reduction and Deep Learning Approach,‖ IEEE Trans. 
Geosci. Remote Sens., 2016. 

[98] D. Ravi et al., ―Deep Learning for Health Informatics,‖ IEEE J. Biomed. Heal. 
Informatics, 2017. 

[99] M. M. A. Rahhal, Y. Bazi, H. Alhichri, N. Alajlan, F. Melgani, and R. R. Yager, ―Deep 
learning approach for active classification of electrocardiogram signals,‖ Inf. Sci. (Ny)., 
2016. 

[100] Y. R. Tabar and U. Halici, ―A novel deep learning approach for classification of EEG 
motor imagery signals,‖ J. Neural Eng., 2017. 

[101] S. Jirayucharoensak, S. Pan-Ngum, and P. Israsena, ―EEG-based emotion recognition 
using deep learning network with principal component based covariate shift 
adaptation.,‖ ScientificWorldJournal., 2014. 

[102] D. Maji, A. Santara, P. Mitra, and D. Sheet, ―Ensemble of Deep Convolutional Neural 
Networks for Learning to Detect Retinal Vessels in Fundus Images,‖ CoRR, 2016. 

[103] M. Melinscak, P. Prentasic, and S. Loncaric, ―Retinal Vessel Segmentation Using Deep 
Neural Networks,‖ in International Conference on Computer Vision Theory and 
Applications (VISAPP 2015), 2015. 

[104] A. Lahiri, A. G. Roy, D. Sheet, and P. K. Biswas, ―Deep neural ensemble for retinal vessel 
segmentation in fundus images towards achieving label-free angiography,‖ in 
Proceedings of the Annual International Conference of the IEEE Engineering in 
Medicine and Biology Society, EMBS, 2016. 

[105] J. Y. Choi, T. K. Yoo, J. G. Seo, J. Kwak, T. T. Um, and T. H. Rim, ―Multi-categorical deep 
learning neural network to classify retinal images: A pilot study employing small 
database,‖ PLoS One, 2017. 

[106] B. Korbar et al., ―Deep Learning for Classification of Colorectal Polyps on Whole-slide 
Images.,‖ J. Pathol. Inform., vol. 8, p. 30, 2017. 

[107] P. J. Chen, M. C. Lin, M. J. Lai, J. C. Lin, H. H. S. Lu, and V. S. Tseng, ―Accurate 
Classification of Diminutive Colorectal Polyps Using Computer-Aided Analysis,‖ 
Gastroenterology, 2018. 

[108] E. Ribeiro, A. Uhl, G. Wimmer, and M. Häfner, ―Exploring Deep Learning and Transfer 
Learning for Colonic Polyp Classification,‖ Comput. Math. Methods Med., 2016. 

[109] D. Wang, A. Khosla, R. Gargeya, H. Irshad, and A. H. Beck, ―Deep Learning for 
Identifying Metastatic Breast Cancer,‖ arXiv Prepr., 2016. 

[110] K. Sirinukunwattana, S. E. A. Raza, Y. W. Tsang, D. R. J. Snead, I. A. Cree, and N. M. 
Rajpoot, ―Locality Sensitive Deep Learning for Detection and Classification of Nuclei in 
Routine Colon Cancer Histology Images,‖ IEEE Trans. Med. Imaging, 2016. 

[111] H. Sharma, N. Zerbe, I. Klempert, O. Hellwich, and P. Hufnagl, ―Deep convolutional 
neural networks for automatic classification of gastric carcinoma using whole slide 
images in digital histopathology,‖ Comput. Med. Imaging Graph., 2017. 

[112] D. Bychkov et al., ―Deep learning based tissue analysis predicts outcome in colorectal 
cancer,‖ Sci. Rep., 2018. 

[113] A. Cruz-Roa et al., ―Automatic detection of invasive ductal carcinoma in whole slide 
images with convolutional neural networks,‖ in Proc. of SPIE, 2014. 

[114] H. Akbari, K. Uto, Y. Kosugi, K. Kojima, and N. Tanaka, ―Cancer detection using infrared 
hyperspectral imaging,‖ Cancer Sci., vol. 102, no. 4, pp. 852–857, 2011. 



Bibliography 

 

~ 141 ~ 

 

[115] S. Kiyotoki et al., ―New method for detection of gastric cancer by hyperspectral imaging: 
a pilot study,‖ J. Biomed. Opt., vol. 18, no. 2, p. 026010, 2013. 

[116] A. Goto et al., ―Use of hyperspectral imaging technology to develop a diagnostic support 
system for gastric cancer,‖ J. Biomed. Opt., vol. 20, no. 1, p. 016017, 2015. 

[117] B. Kim, N. Kehtarnavaz, P. LeBoulluec, H. Liu, Y. Peng, and D. Euhus, ―Automation of 
ROI extraction in hyperspectral breast images,‖ Conf. Proc.  ... Annu. Int. Conf. IEEE 
Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf., vol. 2013, pp. 3658–3661, 
2013. 

[118] R. Pourreza-Shahri, F. Saki, N. Kehtarnavaz, P. Leboulluec, and H. Liu, ―Classification of 
ex-vivo breast cancer positive margins measured by hyperspectral imaging,‖ in 2013 
IEEE International Conference on Image Processing, ICIP 2013 - Proceedings, 2013, 
pp. 1408–1412. 

[119] B. Fei et al., ―Label-free reflectance hyperspectral imaging for tumor margin assessment: 
a pilot study on surgical specimens of cancer patients,‖ J. Biomed. Opt., vol. 22, no. 08, 
p. 1, 2017. 

[120] G. Lu et al., ―Detection of head and neck cancer in surgical specimens using quantitative 
hyperspectral imaging,‖ Clin. Cancer Res., vol. 23, no. 18, pp. 5426–5436, 2017. 

[121] M. Halicek et al., ―Deep convolutional neural networks for classifying head and neck 
cancer using hyperspectral imaging,‖ J. Biomed. Opt., vol. 22, no. 6, p. 060503, Jun. 
2017. 

[122] S. V. Panasyuk et al., ―Medical hyperspectral imaging to facilitate residual tumor 
identification during surgery,‖ Cancer Biol. Ther., vol. 6, no. 3, pp. 439–446, Mar. 2007. 

[123] D. R. McCormack et al., ―In vivo hyperspectral imaging of microvessel response to 
trastuzumab treatment in breast cancer xenografts,‖ Biomed. Opt. Express, vol. 5, no. 7, 
p. 2247, 2014. 

[124] B. Fei, H. Akbari, and L. V. Halig, ―Hyperspectral imaging and spectral-spatial 
classification for cancer detection,‖ in 2012 5th International Conference on Biomedical 
Engineering and Informatics, BMEI 2012, 2012, pp. 62–64. 

[125] H. Akbari et al., ―Hyperspectral imaging and quantitative analysis for prostate cancer 
detection,‖ J. Biomed. Opt., vol. 17, no. 7, p. 0760051, Jul. 2012. 

[126] G. Lu, L. Halig, D. Wang, Z. G. Chen, and B. Fei, ―Spectral-Spatial Classification Using 
Tensor Modeling for Cancer Detection with Hyperspectral Imaging.,‖ Proc. SPIE-the Int. 
Soc. Opt. Eng., vol. 9034, p. 903413, 2014. 

[127] G. Lu, L. Halig, D. Wang, X. Qin, Z. G. Chen, and B. Fei, ―Spectral-spatial classification 
for noninvasive cancer detection using hyperspectral imaging,‖ J. Biomed. Opt., vol. 19, 
no. 10, p. 106004, 2014. 

[128] G. Lu, L. Halig, D. Wang, Z. G. Chen, and B. Fei, ―Hyperspectral imaging for cancer 
surgical margin delineation: registration of hyperspectral and histological images,‖ 2014, 
vol. 9036, p. 90360S. 

[129] G. Lu, X. Qin, D. Wang, Z. G. Chen, and B. Fei, ―Quantitative wavelength analysis and 
image classification for intraoperative cancer diagnosis with hyperspectral imaging,‖ in 
Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 2015, vol. 9415. 

[130] G. Lu et al., ―Framework for hyperspectral image processing and quantification for 
cancer detection during animal tumor surgery,‖ J. Biomed. Opt., vol. 20, no. 12, p. 
126012, 2015. 

[131] R. Pike, G. Lu, D. Wang, Z. G. Chen, and B. Fei, ―A Minimum Spanning Forest-Based 
Method for Noninvasive Cancer Detection With Hyperspectral Imaging,‖ IEEE Trans. 
Biomed. Eng., vol. 63, no. 3, pp. 653–663, 2016. 

[132] R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, ―Real-time snapshot hyperspectral 
imaging endoscope,‖ J. Biomed. Opt., vol. 16, no. 5, p. 56005, 2011. 

[133] J. L. Jayanthi et al., ―Diffuse reflectance spectroscopy: diagnostic accuracy of a non-
invasive screening technique for early detection of malignant changes in the oral cavity,‖ 



Bibliography 

 

~ 142 ~ 

BMJ Open, vol. 1, no. 1, p. e000071, Jun. 2011. 

[134] B. Regeling et al., ―Development of an image pre-processor for operational hyperspectral 
laryngeal cancer detection,‖ J. Biophotonics, vol. 9, no. 3, pp. 235–245, Mar. 2016. 

[135] W. Laffers et al., ―Early recognition of cancerous lesions in the mouth and oropharynx: 
Automated evaluation of hyperspectral image stacks,‖ HNO, vol. 64, no. 1, pp. 27–33, 
Jan. 2016. 

[136] Z. Han, A. Zhang, X. Wang, Z. Sun, M. D. Wang, and T. Xie, ―In vivo use of hyperspectral 
imaging to develop a noncontact endoscopic diagnosis support system for malignant 
colorectal tumors,‖ J. Biomed. Opt., vol. 21, no. 1, p. 016001, 2016. 

[137] Z. Liu, H. Wang, and Q. Li, ―Tongue tumor detection in medical hyperspectral images,‖ 
Sensors, vol. 12, no. 1, pp. 162–174, 2012. 

[138] C. D. Elvidge, D. M. Keith, B. T. Tuttle, and K. E. Baugh, ―Spectral identification of 
lighting type and character,‖ Sensors, vol. 10, no. 4, pp. 3961–3988, 2010. 

[139] P. J. Quinn, ―Effects of temperature on cell membranes.,‖ Symp. Soc. Exp. Biol., vol. 42, 
pp. 237–58, 1988. 

[140] H. Akbari and Y. Kosugi, ―Hyperspectral imaging: A new modality in surgery,‖ in Recent 
advances in biomedical engineering, InTech, 2009. 

[141] B. D. De Dinechin et al., ―A clustered manycore processor architecture for embedded and 
accelerated applications,‖ in 2013 IEEE High Performance Extreme Computing 
Conference, HPEC 2013, 2013. 

[142] D. Madroñal et al., ―Energy consumption characterization of a Massively Parallel 
Processor Array (MPPA) platform running a hyperspectral SVM classifier,‖ in 
Conference on Design and Architectures for Signal and Image Processing, DASIP, 2017. 

[143] K. Peleg, G. L. Anderson, and C. Yang, ―Repeatability of hyperspectral imaging systems - 
Quantification and improvement,‖ Int. J. Remote Sens., vol. 26, no. 1, pp. 115–139, 2005. 

[144] H. Fabelo et al., ―HELICoiD project: A new use of hyperspectral imaging for brain cancer 
detection in real-time during neurosurgical operations,‖ in Proceedings of SPIE - The 
International Society for Optical Engineering, 2016, vol. 9860. 

[145] F. A. Kruse et al., ―The spectral image processing system (SIPS)-interactive visualization 
and analysis of imaging spectrometer data,‖ Remote Sens. Environ., vol. 44, no. 2–3, pp. 
145–163, 1993. 

[146] H. Fabelo et al., ―Spatio-spectral classification of hyperspectral images for brain cancer 
detection during surgical operations,‖ PLoS One, vol. 13, no. 3, pp. 1–27, 2018. 

[147] H. Fabelo et al., ―A novel use of hyperspectral images for human brain cancer detection 
using in-vivo samples,‖ in BIOSIGNALS 2016 - 9th International Conference on Bio-
Inspired Systems and Signal Processing, Proceedings; Part of 9th International Joint 
Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2016, 
2016. 

[148] D. Ravi, H. Fabelo, G. M. Callic, and G.-Z. Yang, ―Manifold Embedding and Semantic 
Segmentation for Intraoperative Guidance with Hyperspectral Brain Imaging,‖ IEEE 
Trans. Med. Imaging, vol. 36, no. 9, 2017. 

[149] J. F. Pineiro et al., ―Hyperspectral imaging for brain tumour identification and 
boundaries delineation in real-time during neurosurgical operations,‖ Neuro. Oncol., 
2017. 

[150] A. Szolna, J. Morera, J. F. Piñeiro, G. M. Callicó, H. Fabelo, and S. Ortega, 
―Hyperspectral Imaging as A Novel Instrument for Intraoperative Brain Tumor 
Detection,‖ Neurocirugia, vol. 27, p. 166, 2016. 

[151] S. Kabwama et al., ―Intra-operative hyperspectral imaging for brain tumour detection 
and delineation: Current progress on the HELICoid project,‖ Int. J. Surg., vol. 36, p. 
S140, 2016. 

[152] K. Huang, S. Li, X. Kang, and L. Fang, ―Spectral–Spatial Hyperspectral Image 



Bibliography 

 

~ 143 ~ 

 

Classification Based on KNN,‖ Sens. Imaging, vol. 17, no. 1, pp. 1–13, 2016. 

[153] D. Ravi, H. Fabelo, G. M. Callico, and G. Yang, ―Manifold Embedding and Semantic 
Segmentation for Intraoperative Guidance with Hyperspectral Brain Imaging,‖ IEEE 
Trans. Med. Imaging, 2017. 

[154] Y. Tarabalka, J. Benediktsson, and J. Chanussot, ―Spectral–Spatial Classification of 
Hyperspectral Imagery Based on Partitional Clustering Techniques,‖ IEEE Trans. 
Geosci. Remote Sens., vol. 47, no. 8, pp. 2973–2987, 2009. 

[155] L. J. P. Van Der Maaten, E. O. Postma, and H. J. Van Den Herik, ―Dimensionality 
Reduction: A Comparative Review,‖ J. Mach. Learn. Res., vol. 10, pp. 1–41, 2009. 

[156] K. Peason, ―On lines and planes of closest fit to systems of point in space,‖ Philos. Mag., 
vol. 2, no. 11, pp. 559–572, 1901. 

[157] J. B. Tenenbaum, V. de Silva, and J. C. Langford, ―A global geometric framework for 
nonlinear dimensionality reduction.,‖ Science, vol. 290, no. 5500, pp. 2319–23, 2000. 

[158] S. T. Roweis and L. K. Saul, ―Nonlinear dimensionality reduction by locally linear 
embedding.,‖ Science, vol. 290, no. 5500, pp. 2323–6, 2000. 

[159] D. L. Donoho and C. Grimes, ―Hessian eigenmaps: locally linear embedding techniques 
for high-dimensional data.,‖ Proc. Natl. Acad. Sci. U. S. A., vol. 100, no. 10, pp. 5591–
5596, 2003. 

[160] M. Belkin and P. Niyogi, ―Laplacian Eigenmaps and Spectral Techniques for Embedding 
and Clustering,‖ Nips, vol. 14, pp. 585–591, 2001. 

[161] D. Meng, Y. Leung, and Z. Xu, ―A new quality assessment criterion for nonlinear 
dimensionality reduction,‖ Neurocomputing, vol. 74, no. 6, pp. 941–948, Feb. 2011. 

[162] K. Matkovic, L. Neumann, A. Neumann, T. Psik, and W. Purgathofer, ―Global Contrast 
Factor - a New Approach to Image Contrast,‖ Comput. Aesthet. Graph. Vis. Imaging, 
2005. 

[163] L. J. P. Van Der Maaten and G. E. Hinton, ―Visualizing high-dimensional data using t-
sne,‖ J. Mach. Learn. Res., vol. 9, pp. 2579–2605, 2008. 

[164] K. Lekadir et al., ―Tissue characterization using dimensionality reduction and 
fluorescence imaging,‖ in 9th International Conference on Medical Image Computing 
and Computer Assisted Intervention (MICCAI’06), 2006, vol. 4191, pp. 586–593. 

[165] C. Chang and C. Lin, ―LIBSVM : A Library for Support Vector Machines,‖ ACM Trans. 
Intell. Syst. Technol., vol. 2, pp. 1–39, 2013. 

[166] Y. W. Teh and S. T. Roweis, ―Automatic Alignment of Local Representations,‖ undefined, 
2002. 

[167] S. Lafon and A. B. Lee, ―Diffusion maps and coarse-graining: A unified framework for 
dimensionality reduction, graph partitioning, and data set parameterization,‖ IEEE 
Trans. Pattern Anal. Mach. Intell., 2006. 

[168] K. Q. Weinberger, B. D. Packer, and L. K. Saul, ―Nonlinear Dimensionality Reduction by 
Semidefinite Programming and Kernel Matrix Factorization,‖ in Tenth International 
Workshop on Artificial Intelligence and Statistics, 2005. 

[169] Xiaofei He, Deng Cai, Shuicheng Yan, and Hong-Jiang Zhang, ―Neighborhood preserving 
embedding,‖ in Tenth IEEE International Conference on Computer Vision (ICCV’05) 
Volume 1, 2005. 

[170] L. Teng, H. Li, X. Fu, W. Chen, and I. F. Shen, ―Dimension reduction of microarray data 
based on local tangent space alignment,‖ in Fourth IEEE Conference on Cognitive 
Informatics 2005, ICCI 2005, 2005. 

[171] G. E. Hinton and R. R. Salakhutdinov, ―Reducing the dimensionality of data with neural 
networks,‖ Science (80-. )., 2006. 

[172] M. Balasubramanian and E. L. Schwartz, ―The Isomap Algorithm and Topological 
Stability,‖ Science (80-. )., vol. 295, no. 5552, p. 7a–7, Jan. 2002. 



Bibliography 

 

~ 144 ~ 

[173] T. Zhang, J. Yang, D. Zhao, and X. Ge, ―Linear local tangent space alignment and 
application to face recognition,‖ Neurocomputing, 2007. 

[174] V. De Silva and J. B. Tenenbaum, ―Global Versus Local Methods in Nonlinear 
Dimensionality Reduction,‖ Adv. Neural Inf. Process. Syst. 15, 2003. 

[175] F. Sha and L. K. Saul, ―Analysis and extension of spectral methods for nonlinear 
dimensionality reduction,‖ in Proceedings of the 22nd international conference on 
Machine learning  - ICML ’05, 2005, pp. 784–791. 

[176] D. K. Agrafiotis, ―Stochastic proximity embedding,‖ J. Comput. Chem., 2003. 

[177] S. Roweis, ―EM Algorithms for PCA and SPCA,‖ Computing, 1997. 

[178] J. W. Sammon, ―A Nonlinear Mapping for Data Structure Analysis,‖ IEEE Trans. 
Comput., 1969. 

[179] C. Spearman, ―&quot; General Intelligence,&quot; Objectively Determined and 
Measured,‖ Am. J. Psychol., 1904. 

[180] X. He and P. Niyogi, ―Locality preserving projections,‖ Neural Inf. Process. Syst., 2004. 

[181] K. Weinberger and L. Saul, ―An introduction to nonlinear dimensionality reduction by 
maximum variance unfolding,‖ Aaai, 2006. 

[182] K. Q. Weinberger, F. Sha, Q. Zhu, and L. K. Saul, ―Graph Laplacian Regularization for 
Large-Scale Semidefinite Programming,‖ in Proceedings of the 19th Annual Conference 
on Neural Information Processing Systems, 2006. 

[183] B. R. Kiran, B. Stanciulescu, and J. Angulo, ―Unsupervised clustering of hyperspectral 
images of brain tissues by hierarchical non-negative matrix factorization,‖ in 
BIOIMAGING 2016, 2016, vol. 2, no. 77–84, p. 8. 

[184] H. Fabelo et al., ―An intraoperative visualization system using hyperspectral imaging to 
aid in brain tumor delineation,‖ Sensors, vol. 18, no. 2, 2018. 

[185] R. Lazcano et al., ―Porting a PCA-based hyperspectral image dimensionality reduction 
algorithm for brain cancer detection on a manycore architecture,‖ J. Syst. Archit., vol. 77, 
pp. 101–111, 2017. 

[186] D. Madroñal et al., ―SVM-based real-time hyperspectral image classifier on a manycore 
architecture,‖ J. Syst. Archit., vol. 80, 2017. 

[187] D. Madroñal et al., ―Implementation of a spatial-spectral classification algorithm using 
medical hyperspectral images,‖ in 2017 32nd Conference on Design of Circuits and 
Integrated Systems (DCIS), 2017. 

[188] D. Madronal et al., ―Energy consumption characterization of a Massively Parallel 
Processor Array (MPPA) platform running a hyperspectral SVM classifier,‖ in 
Conference on Design and Architectures for Signal and Image Processing, DASIP, 2017, 
vol. 2017–Septe. 

[189] R. Lazcano et al., ―Parallel implementation of an iterative PCA algorithm for 
hyperspectral images on a manycore platform,‖ in Conference on Design and 
Architectures for Signal and Image Processing, DASIP, 2017, vol. 2017–Septe. 

[190] D. Madroñal et al., ―Hyperspectral image classification using a parallel implementation 
of the linear SVM on a Massively Parallel Processor Array (MPPA) platform,‖ in 
Conference on Design and Architectures for Signal and Image Processing, DASIP, 2017. 

[191] D. Madroñal, H. Fabelo, R. Lazcano, G. M. Callicó, E. Juárez, and C. Sanz, ―Parallel 
implementation of a hyperspectral image linear SVM classifier using RVC-CAL,‖ in 
Proceedings of SPIE - The International Society for Optical Engineering, 2016, vol. 
10007. 

[192] R. Lazcano et al., ―Parallel exploitation of a spatial-spectral classification approach for 
hyperspectral images on RVC-CAL,‖ in Proceedings of SPIE - The International Society 
for Optical Engineering, 2017, vol. 10430. 

[193] H. Fabelo et al., ―Deep Learning-Based Framework for In Vivo Identification of 
Glioblastoma Tumor using Hyperspectral Images of Human Brain,‖ Sensors, vol. 19, no. 



Bibliography 

 

~ 145 ~ 

 

4, p. 920, Feb. 2019. 

[194] M. Abadi et al., ―TensorFlow: A System for Large-Scale Machine Learning TensorFlow: A 
system for large-scale machine learning,‖ in 12th USENIX Symposium on Operating 
Systems Design and Implementation (OSDI ’16), 2016. 

[195] A. Krizhevsky and G. E. Hinton, ―ImageNet Classification with Deep Convolutional 
Neural Networks,‖ Neural Inf. Process. Syst., 2012. 

[196] Y. Song et al., ―Quantitative assessment of hemodynamic and structural characteristics of 
in vivo brain tissue using total diffuse reflectance spectrum measured in a non-contact 
fashion,‖ Biomed. Opt. Express, vol. 8, no. 1, p. 78, Jan. 2017. 

[197] G. Zonios, J. Bykowski, and N. Kollias, ―Skin Melanin, Hemoglobin, and Light Scattering 
Properties can be Quantitatively Assessed In Vivo Using Diffuse Reflectance 
Spectroscopy,‖ J. Invest. Dermatol., vol. 117, no. 6, pp. 1452–1457, Dec. 2001. 

[198] F. E. Robles, S. Chowdhury, and A. Wax, ―Assessing hemoglobin concentration using 
spectroscopic optical coherence tomography for feasibility of tissue diagnostics.,‖ 
Biomed. Opt. Express, vol. 1, no. 1, pp. 310–317, Jul. 2010. 

[199] R. C. . Gonzalez and R. E. Woods, Digital image processing. 2008. 

[200] O. Ronneberger, P. Fischer, and T. Brox, ―U-Net: Convolutional Networks for Biomedical 
Image Segmentation,‖ Miccai, 2015. 

[201] H. Fabelo et al., ―SVM Optimization for Brain Tumor Identification Using Infrared 
Spectroscopic Samples,‖ Sensors, vol. 18, no. 12, p. 4487, Dec. 2018. 

[202] E. Torti et al., ―The HELICoiD Project: Parallel SVM for Brain Cancer Classification,‖ in 
Proceedings - 20th Euromicro Conference on Digital System Design, DSD 2017, 2017. 

[203] ―Accelerating the K-Nearest Neighbors Filtering Algorithm to Optimize the Real-Time 
Classification of Human Brain Tumor in Hyperspectral Images,‖ Sensors, Jul. 2018. 

[204] E. Torti et al., ―Acceleration of brain cancer detection algorithms during surgery 
procedures using GPUs,‖ Microprocess. Microsyst., vol. 61, pp. 171–178, Sep. 2018. 

[205] A. Hernandez, H. Fabelo, S. Ortega, A. Baez, G. M. Callico, and R. Sarmiento, ―Random 
forest training stage acceleration using graphics processing units,‖ in 2017 32nd 
Conference on Design of Circuits and Integrated Systems (DCIS), 2017, pp. 1–6. 

[206] S. Ortega, G. M. Callico, M. L. Plaza, R. Camacho, H. Fabelo, and R. Sarmiento, 
―Hyperspectral database of pathological in-vitro human brain samples to detect 
carcinogenic tissues,‖ in Proceedings - International Symposium on Biomedical 
Imaging, 2016, vol. 2016–June. 

[207] S. Ortega, H. Fabelo, R. Camacho, M. L. Plaza, G. M. Callicó, and R. Sarmiento, 
―Detecting brain tumor in pathological slides using hyperspectral imaging,‖ Biomed. Opt. 
Express, vol. 9, no. 2, 2018. 

[208] S. Ortega et al., ―P03.18 Detection of human brain cancer in pathological slides using 
hyperspectral images,‖ Neuro. Oncol., vol. 19, no. suppl_3, p. iii37, 2017. 

[209] N. Corp., ―CUDA Toolkit Documentation.‖ [Online]. Available: 
http://docs.nvidia.com/cuda/cublas/. [Accessed: 20-Aug-2001]. 

[210] NVIDIA, ―TESLA K40 GPU ACTIVE ACCELERATOR Board Specification.‖ [Online]. 
Available: https://www.nvidia.com/content/PDF/kepler/Tesla-K40-Active-Board-Spec-
BD-06949-001_v03.pdf. [Accessed: 09-May-2018]. 

 

 



 



 



 




