Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/56365
Título: Using data mining to analyze dwell time and nonstop running time in road-based mass transit systems
Autores/as: Cristóbal, Teresa
Padrón Morales, Gabino 
Quesada Arencibia, Francisco Alexis 
Alayón Hernández, Francisco Javier 
De Blasio , Gabriele Salvatore 
García Rodríguez, Carmelo Rubén 
Clasificación UNESCO: 3327 Tecnología de los sistemas de transporte
120304 Inteligencia artificial
Palabras clave: Road-based mass transit systems
Travel time
Intelligent transport systems
Big data
Data mining, et al.
Fecha de publicación: 2018
Publicación seriada: Proceedings (MDPI) 
Conferencia: 12th International Conference on Ubiquitous Computing and Ambient ‪Intelligence - UCAmI 2018 
Resumen: Travel Time plays a key role in the quality of service in road-based mass transit systems. In this type of mass transit systems, travel time of a public transport line is the sum of the dwell time at each bus stop and the nonstop running time between pair of consecutives bus stops of the line. The aim of the methodology presented in this paper is to obtain the behavior patterns of these times. Knowing these patterns, it would be possible to reduce travel time or its variability to make more reliable travel time predictions. To achieve this goal, the methodology uses data related to check-in and check-out movements of the passengers and vehicles GPS positions, processing this data by Data Mining techniques. To illustrate the validity of the proposal, the results obtained in a case of use in presented.
URI: http://hdl.handle.net/10553/56365
ISSN: 2504-3900
DOI: 10.3390/proceedings2191217
Fuente: Proceedings (MDPI) [ISSN 2504-3900], v. 2 (19), 1217
Colección:Artículos
miniatura
pdf
Adobe PDF (1,34 MB)
Vista completa

Visitas

139
actualizado el 31-oct-2024

Descargas

134
actualizado el 31-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.