Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/56267
Campo DC Valoridioma
dc.contributor.authorAzman, I.en_US
dc.contributor.authorJleli, M.en_US
dc.contributor.authorLópez Brito, María Belénen_US
dc.contributor.authorSadarangani Sadarangani, Kishin Bhagwandsen_US
dc.contributor.authorSamet, B.en_US
dc.date.accessioned2019-07-29T08:30:28Z-
dc.date.available2019-07-29T08:30:28Z-
dc.date.issued2018en_US
dc.identifier.issn2008-1898en_US
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/56267-
dc.description.abstractIn this paper, we study the solvability of a nonlinear fractional differential equation under fractional integral boundary conditions. Via a mixed monotone operator method, some new results on the existence and uniqueness of a positive solution for the considered model are obtained. Moreover, we provide iterative sequences for approximating the solution. Some examples are also presented in order to illustrate the obtained result.en_US
dc.languageengen_US
dc.relation.ispartofJournal of Nonlinear Science and Applicationsen_US
dc.sourceJournal of Nonlinear Science and Applications [ISSN 2008-1898], v. 11 (2), p. 237-251en_US
dc.subject12 Matemáticasen_US
dc.subject.otherFractional boundary value problemen_US
dc.subject.otherFractional integral boundary conditionen_US
dc.subject.otherMixed monotone operatoren_US
dc.titlePositive solutions for a class of fractional boundary value problems with fractional boundary conditionsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.22436/jnsa.011.02.06en_US
dc.description.lastpage251-
dc.identifier.issue02-
dc.description.firstpage237-
dc.relation.volume11-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.notasMSC: 34A08; 31B10; 47H07en_US
dc.identifier.ulpgces
dc.description.sjr0,449
dc.description.sjrqQ3
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-1484-0890-
crisitem.author.orcid0000-0002-7090-0114-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.fullNameLópez Brito, María Belén-
crisitem.author.fullNameSadarangani Sadarangani, Kishin Bhagwands-
Colección:Artículos
miniatura
pdf
Adobe PDF (1,67 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.