Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/55713
Título: Local edginess measures in PolSAR imagery by using stochastic distances
Autores/as: Gómez Déniz, Luis 
Alvarez, Luis 
Frery, Alejandro C.
Clasificación UNESCO: 120601 Construcción de algoritmos
120602 Ecuaciones diferenciales
220990 Tratamiento digital. Imágenes
Palabras clave: Edge Detector
Synthetic Aperture Radar Polarimetry
Structure Tensor
Edge Detection
Fecha de publicación: 2018
Publicación seriada: IEEE International Geoscience and Remote Sensing Symposium proceedings 
Conferencia: IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2018) 
Resumen: In this paper we study the local behavior of Fully PolSAR (Polarimetric Synthetic Aperture Radar) images defined by 3 × 3 complex Wishart distributions. We propose a generalization of the well-known structure tensor to Fully PolSAR images, as well as a measure of the smoothness of such predominant direction. This measure provides local information as the predominant direction of maximum variation of the complex Wishart distribution in a neighborhood of an image domain point (x, y). We use stochastic distances defined in the space of Wishart matrices to generalize de structure tensor to PolSAR images. The study of the local behavior of PolSAR images address a number of processing and analysis problems. In particular, in this paper we apply this new approach to edge estimation using the magnitude of the PolSAR image variation provided by the generalized structure tensor. We also show promising results for simulated and actual PolSAR data.
URI: http://hdl.handle.net/10553/55713
ISBN: 9781538671504
ISSN: 2153-6996
DOI: 10.1109/IGARSS.2018.8518008
Fuente: IEEE International Geoscience and Remote Sensing Symposium proceedings [ISSN 2153-6996], p. 5796-5799, (2018)
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

3
actualizado el 24-nov-2024

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 25-feb-2024

Visitas

124
actualizado el 24-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.