Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/55458
DC FieldValueLanguage
dc.contributor.authorSánchez-Rodríguez, Daviden_US
dc.contributor.authorAlonso-González, Itziaren_US
dc.contributor.authorLey-Bosch, Carlosen_US
dc.contributor.authorSánchez-Medina, Javier J.en_US
dc.contributor.authorQuintana-Suárez, Miguel A.en_US
dc.contributor.authorRamírez-Casañas, Carlosen_US
dc.date.accessioned2019-05-21T15:43:37Z-
dc.date.available2019-05-21T15:43:37Z-
dc.date.issued2017en_US
dc.identifier.issn1942-2644en_US
dc.identifier.urihttp://hdl.handle.net/10553/55458-
dc.description.abstractIndoor positioning estimation has become an attractive research topic due to the growing interest in location-aware services. Research works have been proposed on solving this problem by using wireless networks. Nevertheless, there is still much room for improvement in the quality of the proposed classification or regression models, i.e., in terms of accuracy or root mean squared error (RMSE). In the last years, the emergence of Visible Light Communication brings a brand new approach to high quality indoor positioning. Among its advantages, this new technology is immune to electromagnetic interference, and also, the variance of the received optical power is smaller than other RF based technologies. In this paper, we propose a fingerprinting indoor location estimation methodology based on principal components analysis (PCA) and decision trees as classification learner. The proposed localization methodology is based on the received signal strength from a grid of emitters multiple. PCA is used to transform all of that features into principal components, consequently reducing the data dimensionality, improving the interpretability of the resulting tree models and the overall computational performance of the proposed system. Along with the proposed method, we also share experimental results derived from the received signal strength values obtained from an IEEE 802.15.7 simulator developed by our research group. Results show that the system accuracy is slightly improved by range 1%-10% and the computation time by range 40%-50%, as compared to the system in which PCA is not carried out. The best tested model (classifier) yielded a 95.6% accuracy, with an average error distance of 2.4 centimeters.en_US
dc.languageengen_US
dc.relation.ispartofInternational Journal on Advances in Networks and Servicesen_US
dc.sourceInternational Journal on Advances in Networks and Services [ISSN 1942-2644], v. 10 (1-2), p. 25-34en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject.otherIndoor localizationen_US
dc.subject.otherVisible light communicationen_US
dc.subject.otherDecision treesen_US
dc.subject.otherPrincipal components analysisen_US
dc.subject.otherReceived signal strengthen_US
dc.titleIndoor localization based on principal components and decision trees in IEEE 802.15.7 visible light communication networksen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgces
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Redes y Servicios Telemáticos-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Ingeniería Telemática-
crisitem.author.deptGIR IDeTIC: División de Redes y Servicios Telemáticos-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Ingeniería Telemática-
crisitem.author.deptGIR IDeTIC: División de Redes y Servicios Telemáticos-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptGIR IUCES: Centro de Innovación para la Empresa, el Turismo, la Internacionalización y la Sostenibilidad-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptDepartamento de Ingeniería Telemática-
crisitem.author.deptGIR IDeTIC: División de Redes y Servicios Telemáticos-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Ingeniería Telemática-
crisitem.author.orcid0000-0003-2700-1591-
crisitem.author.orcid0000-0001-8487-2559-
crisitem.author.orcid0000-0002-0939-3045-
crisitem.author.orcid0000-0003-2530-3182-
crisitem.author.orcid0000-0002-7520-4468-
crisitem.author.orcid0000-0001-7402-373X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameSánchez Rodríguez, David De La Cruz-
crisitem.author.fullNameAlonso González, Itziar Goretti-
crisitem.author.fullNameLey Bosch,Carlos Juan-
crisitem.author.fullNameSánchez Medina, Javier Jesús-
crisitem.author.fullNameQuintana Suárez, Miguel Ángel-
crisitem.author.fullNameRamírez Casañas, Carlos Miguel-
Appears in Collections:Artículos
Thumbnail
pdf
Adobe PDF (836,32 kB)
Show simple item record

Page view(s)

106
checked on Mar 16, 2024

Download(s)

49
checked on Mar 16, 2024

Google ScholarTM

Check


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.