Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/55361
Campo DC Valoridioma
dc.contributor.authorSantos Espino, José Miguelen_US
dc.contributor.authorAfonso-Suárez, María Doloresen_US
dc.contributor.authorGuerra Artal, Cayetano Nicolásen_US
dc.contributor.authorGarcía-Sánchez, M. Sorayaen_US
dc.date.accessioned2019-05-13T07:59:43Z-
dc.date.available2019-05-13T07:59:43Z-
dc.date.issued2013en_US
dc.identifier.isbn978-84-616-3847-5en_US
dc.identifier.issn2340-1095en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/55361-
dc.description.abstractThe use of instructional videos to support the teaching-learning process in higher education has been increasing in recent years. Videos and all other kinds of audiovisual objects are being published on online learning platforms and MOOCs. In this context, a noticeable concern is how to produce quality material that maximizes its learning effectiveness. It is obvious that the learning effectiveness of an instructional video is affected by its contents. Moreover, the effectiveness may also be influenced by low-level technical features such as video length, audio and video quality (i.e. noise), or even the presence of postproduction items like transition effects. This paper addresses the issue of defining what characterizes the quality of an instructional video, from the perspective of the production process. We show the results of a study conducted at the Universidad de Las Palmas de Gran Canaria (ULPGC), based on the videos created within the innovative Prometeo project. Prometeo is a ULPGC corporate project aimed at developing multimedia and interactive learning objects for university students. During recent years, the project Prometeo has been building a considerable corpus of videos which serves as a data source to analyze quality and effectiveness parameters. The study has delivered a conceptual model for categorizing video characteristics, and the identification of a set of technical characteristics which are judged as influential in the overall learning effectiveness of videos. The results will help to formulate general guidelines for the successful production of instructional videos, and for quality assurance procedures.en_US
dc.languageengen_US
dc.relation.ispartofICERI proceedingsen_US
dc.subject120310 Enseñanza con ayuda de ordenadoren_US
dc.subject5801 Teoría y métodos educativosen_US
dc.subject580101 Medios audiovisualesen_US
dc.subject.otherInstructional videosen_US
dc.subject.otherE-learningen_US
dc.subject.otherQuality assuranceen_US
dc.subject.otherScreencastsen_US
dc.subject.otherVideocastsen_US
dc.titleMeasuring the quality of instructional videos for higher educationen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference6th International Conference on Education, Research and Innovation (ICERI)en_US
dc.identifier.isi000347240601019-
dc.description.lastpage1060en_US
dc.description.firstpage1053en_US
dc.investigacionArtes y Humanidadesen_US
dc.type2Actas de congresosen_US
dc.contributor.daisngid11133494-
dc.contributor.daisngid4804908-
dc.contributor.daisngid22344536-
dc.contributor.daisngid3075046-
dc.description.notasCD-ROMen_US
dc.description.numberofpages8en_US
dc.identifier.eisbn978-84-616-3847-5-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Santos-Espino, JM-
dc.contributor.wosstandardWOS:Suarez, MDA-
dc.contributor.wosstandardWOS:Arta, CG-
dc.contributor.wosstandardWOS:Garcia-Sanchez, S-
dc.date.coverdate2013en_US
dc.identifier.conferenceidevents120891-
dc.identifier.ulpgces
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.event.eventsstartdate18-11-2013-
crisitem.event.eventsenddate20-11-2013-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR Foreign language education through applied technologies and intercultural sensitivity-
crisitem.author.deptDepartamento de Filología Moderna, Traducción e Interpretación-
crisitem.author.orcid0000-0002-5364-1317-
crisitem.author.orcid0000-0003-2811-0319-
crisitem.author.orcid0000-0003-1381-2262-
crisitem.author.orcid0000-0003-1095-9410-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgDepartamento de Filología Moderna, Traducción e Interpretación-
crisitem.author.fullNameSantos Espino, José Miguel-
crisitem.author.fullNameAfonso Suárez, María Dolores-
crisitem.author.fullNameGuerra Artal, Cayetano-
crisitem.author.fullNameGarcía Sánchez, María Soraya-
Colección:Actas de congresos
miniatura
Adobe PDF (91,62 kB)
Vista resumida

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 25-feb-2024

Visitas

171
actualizado el 04-may-2024

Descargas

145
actualizado el 04-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.