Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/55125
Campo DC Valoridioma
dc.contributor.authorMandal, Sanjay K.en_US
dc.contributor.authorRay, Raghaben_US
dc.contributor.authorGonzález, Aridane G.en_US
dc.contributor.authorMavromatis, Vasileiosen_US
dc.contributor.authorPokrovsky, Oleg S.en_US
dc.contributor.authorJana, Tapan K.en_US
dc.date.accessioned2019-02-22T19:17:02Z-
dc.date.available2019-02-22T19:17:02Z-
dc.date.issued2019en_US
dc.identifier.issn0944-1344en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/55125-
dc.description.abstractThe mangrove ecosystems are known to efficiently sequester trace metals both in sediments and plant biomass. However, less is known about the chemistry of rare earth elements (REE) in the coastal environments, especially in the world's largest mangrove province, the Sundarban. Here, the concentration of REE in the sediment and plant organs of eight dominant mangrove species (mainly Avicennia sp.) in the Indian Sundarban was measured to assess REE sources, distribution, and bioaccumulation state. Results revealed that light REE (LREE) were more concentrated than the heavy REE (HREE) (128-144 mg kg(-1) and 12-15 mg kg(-1), respectively) in the mangrove sediments, with a relatively weak positive europium anomaly (Eu/Eu* = 1.03-1.14) with respect to North American shale composite. The primary source of REE was most likely linked to aluminosilicate weathering of crustal materials, and the resultant increase in LREE in the detritus. Vertical distribution of REE in one of the long cores from Lothian Island was altered by mangrove root activity and dependent on various physicochemical properties in the sediment (e.g., Eh, pH, organic carbon, and phosphate). REE uptake by plants was higher in the below-ground parts than in the above-ground plant tissues (root = 3.3 mg kg(-1), leaf + wood = 1.7 mg kg(-1)); however, their total concentration was much lower than in the sediment (149.5 mg kg(-1)). Species-specific variability in bioaccumulation factor and translocation factor was observed indicating different REE partitioning and varying degree of mangrove uptake efficiency. Total REE stock in plant (above + live below ground) was estimated to be 168 g ha(-1) with LREE contributing similar to 90% of the stock. This study highlighted the efficiency of using REE as a biological proxy in determining the degree of bioaccumulation within the mangrove environment.en_US
dc.languageengen_US
dc.publisher0944-1344-
dc.relation.ispartofEnvironmental Science and Pollution Researchen_US
dc.sourceEnvironmental Science And Pollution Research [ISSN 0944-1344], v. 26 (9), p. 9146-9160, (Marzo 2019)en_US
dc.subject2391 Química ambientalen_US
dc.subject.otherEast-Coasten_US
dc.subject.otherMarine-Sedimentsen_US
dc.subject.otherSoutheast Coasten_US
dc.subject.otherSoil Samplesen_US
dc.subject.otherFractionationen_US
dc.subject.otherYttriumen_US
dc.subject.otherPlanten_US
dc.subject.otherForesten_US
dc.subject.otherGrowthen_US
dc.subject.otherAciden_US
dc.subject.otherRare Earth Elements (Ree)en_US
dc.subject.otherBioaccumulationen_US
dc.subject.otherMangroveen_US
dc.subject.otherSundarbanen_US
dc.titleState of rare earth elements in the sediment and their bioaccumulation by mangroves: a case study in pristine islands of Indian Sundarbanen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11356-019-04222-1en_US
dc.identifier.scopus85061201075-
dc.identifier.isi000464851100069-
dc.contributor.authorscopusid57190161389-
dc.contributor.authorscopusid55213242900-
dc.contributor.authorscopusid37031064100-
dc.contributor.authorscopusid45761422700-
dc.contributor.authorscopusid35280747200-
dc.contributor.authorscopusid7003921170-
dc.identifier.eissn1614-7499-
dc.description.lastpage9160en_US
dc.identifier.issue9-
dc.description.firstpage9146en_US
dc.relation.volume26en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid29290011-
dc.contributor.daisngid6893956-
dc.contributor.daisngid1874718-
dc.contributor.daisngid958859-
dc.contributor.daisngid30409226-
dc.contributor.daisngid575118-
dc.description.numberofpages15en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Mandal, SK-
dc.contributor.wosstandardWOS:Ray, R-
dc.contributor.wosstandardWOS:Gonzalez, AG-
dc.contributor.wosstandardWOS:Mavromatis, V-
dc.contributor.wosstandardWOS:Pokrovsky, OS-
dc.contributor.wosstandardWOS:Jana, TK-
dc.date.coverdateMarzo 2019en_US
dc.identifier.ulpgces
dc.description.sjr0,788
dc.description.jcr3,056
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IOCAG: Química Marina-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Química-
crisitem.author.orcid0000-0002-5637-8841-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameGonzález González, Aridane-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

14
actualizado el 14-abr-2024

Citas de WEB OF SCIENCETM
Citations

14
actualizado el 25-feb-2024

Visitas

78
actualizado el 29-jul-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.