Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/55097
Campo DC Valoridioma
dc.contributor.authorDornaika, F.en_US
dc.contributor.authorKhattar, F.en_US
dc.contributor.authorReta, J.en_US
dc.contributor.authorArganda-Carreras, I.en_US
dc.contributor.authorHernandez, M.en_US
dc.contributor.authorRuichek, Y.en_US
dc.date.accessioned2019-02-18T16:30:16Z-
dc.date.available2019-02-18T16:30:16Z-
dc.date.issued2019en_US
dc.identifier.isbn978-3-030-12176-1en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/10553/55097-
dc.description.abstractHow to extract effective features of fatigue in images and videos is important for many applications. This paper introduces a face image descriptor that can be used for discriminating driver fatigue in static frames. In this method, first, each facial image in the sequence is represented by a pyramid whose levels are divided into non-overlapping blocks of the same size, and hybrid image descriptor are employed to extract features in all blocks. Then the obtained descriptor is filtered out using feature selection. Finally, non-linear Support Vector Machines is applied to predict the drowsiness state of the subject in the image. The proposed method was tested on the public dataset NTH Drowsy Driver Detection (NTHUDDD). This dataset includes a wide range of human subjects of different genders, poses, and illuminations in real-life fatigue conditions. Experimental results show the effectiveness of the proposed method. These results show that the proposed hand-crafted feature compare favorably with several approaches based on the use of deep Convolutional Neural Nets.en_US
dc.languageengen_US
dc.publisherSpringeren_US
dc.relation.ispartofLecture Notes in Computer Scienceen_US
dc.sourceVideo Analytics. Face and Facial Expression Recognition. FFER 2018, DLPR 2018. Lecture Notes in Computer Science, v. 11264 LNCS, p. 61-71en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject.otherDrowsiness detectionen_US
dc.subject.otherHand-crafted featuresen_US
dc.subject.otherDeep featuresen_US
dc.subject.otherSupervised classificationen_US
dc.titleImage-based driver drowsiness detectionen_US
dc.typeinfo:eu-repo/semantics/bookParten_US
dc.typeBook parten_US
dc.relation.conference3rd International Workshop on Face and Facial Expression Recognition from Real World Videos (FFER 2018). 2nd International Conference on Pattern Recognition (DLPR 2018)-
dc.identifier.doi10.1007/978-3-030-12177-8_6en_US
dc.identifier.scopus85061136303-
dc.contributor.authorscopusid55967501800-
dc.contributor.authorscopusid57160474600-
dc.contributor.authorscopusid57205695811-
dc.contributor.authorscopusid23395808800-
dc.contributor.authorscopusid7401972145-
dc.contributor.authorscopusid6602526754-
dc.identifier.eissn0302-9743-
dc.description.lastpage71en_US
dc.description.firstpage61en_US
dc.relation.volume11264 LNCSen_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Capítulo de libroen_US
dc.identifier.eisbn978-3-030-12177-8-
dc.utils.revisionen_US
dc.identifier.supplement0302-9743-
dc.identifier.supplement0302-9743-
dc.identifier.ulpgcen_US
dc.description.sjr0,427
dc.description.sjrqQ2
dc.description.spiqQ1
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate20-08-2018-
crisitem.event.eventsenddate20-08-2018-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0001-9717-8048-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameHernández Tejera, Francisco Mario-
Colección:Capítulo de libro
Vista resumida

Citas SCOPUSTM   

1
actualizado el 10-nov-2024

Visitas

77
actualizado el 11-mar-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.