Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/54996
Título: | Classification of mild cognitive impairment stages using machine learning methods | Autores/as: | Cabrera-León, Ylermi García Báez, Patricio Ruiz Alzola, Juan Suárez-Araujo, Carmen Paz |
Clasificación UNESCO: | 3201 Ciencias clínicas 120304 Inteligencia artificial |
Fecha de publicación: | 2018 | Proyectos: | Plataforma E-Salud Traslacional de Ayuda Al Diagnóstico y Manejo de Enfermedades No Comunicables Asociadas Al Envejecimiento. | Conferencia: | 22nd IEEE International Conference on Intelligent Engineering Systems, INES 2018 | Resumen: | The elderly population in developed countries has augmented in the last decades. This has also entailed an increased prevalence of aging diseases. Mild Cognitive Impairment (MCI) is considered a prodromal stage of Alzheimer's Disease (AD), which is the most common dementia. We present a benchmarking of Machine Learning (ML) methods for MCI staging and its early detection via the multiclass classification of Cognitively Normal (CN), Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI) subjects by means of neuropsychological scales. Data were obtained from Alzheimer's Disease Neuroimaging Initiative (ADNI). Our study has been aimed towards hybrid neural architectures, such as the Counter-propagation Network (CPN), for their input space quantification capability, and non-neural methods including ensembles. We also analyzed how class balancing affected them. Non-neural ensembles of learners obtained Area Under the Curve (AUC) values in the range 0.721-0.775, whereas 0.650-0.657 with the monolithic architecture CPN. This suggests that there is a weak difference among these cognitive stages, that the used scales do not offer high enough discriminant power, and that neural ensembles can be a more appropriate solution. | URI: | http://hdl.handle.net/10553/54996 | ISBN: | 978-1-5386-1122-7 | ISSN: | 1562-5850 | DOI: | 10.1109/INES.2018.8523858 | Fuente: | INES 2018 - IEEE 22nd International Conference on Intelligent Engineering Systems, Proceedings (8523858), June 21-23, 2018, Las Palmas de Gran Canaria, Spain, p. 67-72 |
Colección: | Actas de congresos |
Citas SCOPUSTM
7
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
7
actualizado el 25-feb-2024
Visitas
121
actualizado el 13-abr-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.