Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/54968
Title: | On the miscibility of PVDF/PMMA polymer blends: Thermodynamics, experimental and numerical investigations | Authors: | Aid, Sara Eddhahak, Anissa Khelladi, Sofiane Ortega, Zaida Chaabani, Sana Tcharkhtchi, Abbas |
Keywords: | Poly(Vinylidene Fluoride) Pvdf Crystallization Pmma Morphology |
Issue Date: | 2019 | Publisher: | 0142-9418 | Journal: | Polymer Testing | Abstract: | In this paper the miscibility of PVDF/PMMA blends was studied using different approaches: experimental tests, thermodynamics and numerical simulation. The first part of this study is devoted to the experimental work and aims to investigate the miscibility of blends by different experimental techniques. First, blends of PVDF/PMMA at different ratios were compounded and characterized using physico-chemical and rheological methods. The effect of PMMA content on the crystallization behavior of PVDF in the blend was experimentally investigated. At a second stage, the thermodynamic interaction parameter of Flory-Huggins was evaluated as a function of the PMMA proportion in the blends based on the experimental data related to the PVDF melting point and enthalpy. Besides, a numerical method has been developed using Fluent Ansys software to describe the coalescence phenomenon under different scenarios of viscosity ratios and grain sizes of polymers. The confrontation of the code simulation results with the experimental and thermodynamic approaches has shown a good agreement for reproducing the behavior of miscible polymers as well as their aptitude to form a homogeneous blend. | URI: | http://hdl.handle.net/10553/54968 | ISSN: | 0142-9418 | DOI: | 10.1016/j.polymertesting.2018.11.036 | Source: | Polymer Testing[ISSN 0142-9418],v. 73, p. 222-231 |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
77
checked on Mar 30, 2025
WEB OF SCIENCETM
Citations
73
checked on Mar 30, 2025
Page view(s)
118
checked on May 4, 2024
Download(s)
5
checked on May 4, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.