Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/54923
DC FieldValueLanguage
dc.contributor.authorCardinale, D. A.en_US
dc.contributor.authorLarsen, F. J.en_US
dc.contributor.authorJensen-Urstad, M.en_US
dc.contributor.authorRullman, E.en_US
dc.contributor.authorSøndergaard, H.en_US
dc.contributor.authorMorales-Alamo, D.en_US
dc.contributor.authorEkblom, B.en_US
dc.contributor.authorCalbet, J. A.L.en_US
dc.contributor.authorBoushel, R.en_US
dc.date.accessioned2019-02-18T15:42:27Z-
dc.date.available2019-02-18T15:42:27Z-
dc.date.issued2019en_US
dc.identifier.issn1748-1708en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/54923-
dc.description.abstractAim We examined the Fick components together with mitochondrial O2 affinity (p50mito) in defining O2 extraction and O2 uptake during exercise with large and small muscle mass during normoxia (NORM) and hyperoxia (HYPER). Methods Seven individuals performed 2 incremental exercise tests to exhaustion on a bicycle ergometer (BIKE) and 2 on a 1‐legged knee extension ergometer (KE) in NORM or HYPER. Leg blood flow and VO2 were determined by thermodilution and the Fick method. Maximal ADP‐stimulated mitochondrial respiration (OXPHOS) and p50mito were measured ex vivo in isolated mitochondria. Mitochondrial excess capacity in the leg was determined from OXPHOS in permeabilized fibres and muscle mass measured with magnetic resonance imaging in relation to peak leg O2 delivery. Results The ex vivo p50mito increased from 0.06 ± 0.02 to 0.17 ± 0.04 kPa with varying substrate supply and O2 flux rates from 9.84 ± 2.91 to 16.34 ± 4.07 pmol O2·s−1·μg−1 respectively. O2 extraction decreased from 83% in BIKE to 67% in KE as a function of a higher O2 delivery and lower mitochondrial excess capacity. There was a significant relationship between O2 extraction and mitochondrial excess capacity and p50mito that was unrelated to blood flow and mean transit time. Conclusion O2 extraction varies with mitochondrial respiration rate, p50mito and O2 delivery. Mitochondrial excess capacity maintains a low p50mito which enhances O2 diffusion from microvessels to mitochondria during exercise.en_US
dc.languageengen_US
dc.publisher1748-1708-
dc.relation.ispartofActa Physiologicaen_US
dc.sourceActa Physiologica [ISSN 1748-1708], v. 225 (e13110)en_US
dc.subject241106 Fisiología del ejercicioen_US
dc.subject.otherSkeletal-Muscleen_US
dc.subject.otherWhole-Bodyen_US
dc.subject.otherLegen_US
dc.subject.otherVo2en_US
dc.subject.otherMetabolismen_US
dc.subject.otherDeterminantsen_US
dc.subject.otherAdaptationen_US
dc.subject.otherIntensityen_US
dc.subject.otherHyperoxiaen_US
dc.subject.otherTransporten_US
dc.subject.otherExerciseen_US
dc.subject.otherFick Methoden_US
dc.subject.otherMitochondrial P50en_US
dc.subject.otherMuscle O-2 Diffusionen_US
dc.subject.otherOxphosen_US
dc.subject.otherVo2Maxen_US
dc.titleMuscle mass and inspired oxygen influence oxygen extraction at maximal exercise: role of mitochondrial oxygen affinityen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1111/apha.13110en_US
dc.identifier.scopus85051671617-
dc.identifier.isi000454605500006-
dc.contributor.authorscopusid57194286412-
dc.contributor.authorscopusid18434571500-
dc.contributor.authorscopusid7003513991-
dc.contributor.authorscopusid17136363000-
dc.contributor.authorscopusid36958968500-
dc.contributor.authorscopusid35148038500-
dc.contributor.authorscopusid36962325900-
dc.contributor.authorscopusid57204260299-
dc.contributor.authorscopusid7003471688-
dc.identifier.eissn1748-1716-
dc.identifier.issuee13110-
dc.relation.volume225en_US
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.contributor.daisngid3836801-
dc.contributor.daisngid868240-
dc.contributor.daisngid492123-
dc.contributor.daisngid1323252-
dc.contributor.daisngid1592176-
dc.contributor.daisngid1232764-
dc.contributor.daisngid102911-
dc.contributor.daisngid90295-
dc.contributor.daisngid220476-
dc.description.numberofpages13en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Cardinale, DA-
dc.contributor.wosstandardWOS:Larsen, FJ-
dc.contributor.wosstandardWOS:Jensen-Urstad, M-
dc.contributor.wosstandardWOS:Rullman, E-
dc.contributor.wosstandardWOS:Sondergaard, H-
dc.contributor.wosstandardWOS:Morales-Alamo, D-
dc.contributor.wosstandardWOS:Ekblom, B-
dc.contributor.wosstandardWOS:Calbet, JAL-
dc.contributor.wosstandardWOS:Boushel, R-
dc.date.coverdateEnero 2019en_US
dc.identifier.ulpgces
dc.description.sjr1,457
dc.description.jcr5,542
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptDepartamento de Educación Física-
crisitem.author.deptGIR IUIBS: Rendimiento humano, ejercicio físico y salud-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Educación Física-
crisitem.author.orcid0000-0001-8463-397X-
crisitem.author.orcid0000-0002-9215-6234-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.fullNameMorales Álamo, David-
crisitem.author.fullNameLópez Calbet, José Antonio-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

26
checked on Aug 14, 2022

WEB OF SCIENCETM
Citations

27
checked on Aug 14, 2022

Page view(s)

44
checked on Jul 16, 2022

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.