Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/54796
Título: Underwater glider path planning and population size reduction in differential evolution
Autores/as: Zamuda, Aleš
Hernández-Sosa, José Daniel 
Clasificación UNESCO: 120304 Inteligencia artificial
331913 Vehículos submarinos
Palabras clave: Vehicles
Optimization
Fecha de publicación: 2015
Editor/a: Springer 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 15th International Conference on Computer Aided Systems Theory, (EUROCAST 2015) 
Resumen: This paper presents an approach to underwater glider path planning (UGPP), where the population size reduction mechanism is introduced into the differential evolution (DE) meta-heuristic and two types of DE strategies (DE/best and DE/rand) are applied interchangeably. The newly proposed DE instance algorithms using population size reduction on the best and rand DE strategies are assessed and compared on 12 test scenarios using the proposed approach. A Bonferroni-Dunns statistical hypothesis testing is conducted to confirm out-performance of the favoured DE/best strategy over the DE/rand strategy for the 12 UGGP scenarios utilized. The analysis suggests that the approach can benefit from gradually reducing the population size and also tuning the DE parameters. Thereby, this contributes to extend the operational capabilities of the glider vehicle and to improve its value as a marine sensor, facilitating the implementation of flexible sampling schemes.
URI: http://hdl.handle.net/10553/54796
ISBN: 978-3-319-27339-6
ISSN: 0302-9743
DOI: 10.1007/978-3-319-27340-2_104
Fuente: Computer Aided Systems Theory – EUROCAST 2015. EUROCAST 2015. Lecture Notes in Computer Science, v. 9520 LNCS, p. 853-860
Colección:Capítulo de libro
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.