Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/54429
Título: Symmetrical dense optical flow estimation with occlusions detection
Autores/as: Alvarez, Luis 
Deriche, Rachid
Papadopoulo, Théo
Sánchez, Javier 
Clasificación UNESCO: 120601 Construcción de algoritmos
120602 Ecuaciones diferenciales
120326 Simulación
220990 Tratamiento digital. Imágenes
120304 Inteligencia artificial
Fecha de publicación: 2007
Editor/a: 0920-5691
Publicación seriada: International Journal of Computer Vision 
Resumen: Traditional techniques of dense optical flow estimation do not generally yield symmetrical solutions: the results will differ if they are applied between images I 1 and I 2 or between images I 2 and I 1. In this work, we present a method to recover a dense optical flow field map from two images, while explicitely taking into account the symmetry across the images as well as possible occlusions in the flow field. The idea is to consider both displacements vectors from I 1 to I 2 and I 2 to I 1 and to minimise an energy functional that explicitely encodes all those properties. This variational problem is then solved using the gradient flow defined by the Euler-Lagrange equations associated to the energy. To prove the importance of the concepts of symmetry and occlusions for optical flow computation, we have extended a classical approach to handle those. Experiments clearly show the added value of these properties to improve the accuracy of the computed flows. Figures appear in color in the online version of this paper. © 2007 Springer Science+Business Media, LLC.
URI: http://hdl.handle.net/10553/54429
ISSN: 0920-5691
DOI: 10.1007/s11263-007-0041-4
Fuente: International Journal of Computer Vision[ISSN 0920-5691],v. 75, p. 371-385
Colección:Artículos
Vista completa

Citas SCOPUSTM   

108
actualizado el 24-nov-2024

Citas de WEB OF SCIENCETM
Citations

86
actualizado el 24-nov-2024

Visitas

102
actualizado el 23-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.