Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/54386
Título: | Towards a model of volume transmission in biological and artificial neural networks: a CAST approach | Autores/as: | Suarez Araujo, Carmen Paz Lopez, Pablo Fernandez García Báez, Patricio |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Nitric-Oxide | Fecha de publicación: | 2001 | Editor/a: | 0302-9743 | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 8th International Workshop on Computer Aided Systems Theory 8th International Workshop on Computer Aided Systems Theory, EUROCAST 2001 |
Resumen: | At present, a new type of process for signalling between cells seems to be emerging, the diffusion or volume transmission. The volume transmission is performed by means of a gas diffusion process, which is obtained with a diffusive type of signal (NO). We present in this paper a CAST approach, in order to develop a NOdi ffusion model, away from a biologically plausible morphology, that provides a formal framework for the establishing of neural signalling capacity of NOin biological and artificial neural environments. It is also presented a study which shows implications of volume transmission in the emergence of complex structures and self-organisation processes in both biological and artificial neural netwoks. Finally, we present the diffusion version of the Associative Network (AN) [6], the Diffusion Associative Network (DAN), where a more general framework of neural learning, which is based in synaptic and volume transmission, is considered. | URI: | http://hdl.handle.net/10553/54386 | ISBN: | 978-3-540-42959-3 354042959X |
ISSN: | 0302-9743 | Fuente: | Moreno-Díaz R., Buchberger B., Luis Freire J. (eds) Computer Aided Systems Theory — EUROCAST 2001. EUROCAST 2001. Lecture Notes in Computer Science, vol 2178. Springer, Berlin, Heidelberg |
Colección: | Actas de congresos |
Citas SCOPUSTM
5
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
3
actualizado el 25-feb-2024
Visitas
113
actualizado el 31-oct-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.