Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/54386
Título: Towards a model of volume transmission in biological and artificial neural networks: a CAST approach
Autores/as: Suarez Araujo, Carmen Paz 
Lopez, Pablo Fernandez 
García Báez, Patricio 
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Nitric-Oxide
Fecha de publicación: 2001
Editor/a: 0302-9743
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 8th International Workshop on Computer Aided Systems Theory 
8th International Workshop on Computer Aided Systems Theory, EUROCAST 2001 
Resumen: At present, a new type of process for signalling between cells seems to be emerging, the diffusion or volume transmission. The volume transmission is performed by means of a gas diffusion process, which is obtained with a diffusive type of signal (NO). We present in this paper a CAST approach, in order to develop a NOdi ffusion model, away from a biologically plausible morphology, that provides a formal framework for the establishing of neural signalling capacity of NOin biological and artificial neural environments. It is also presented a study which shows implications of volume transmission in the emergence of complex structures and self-organisation processes in both biological and artificial neural netwoks. Finally, we present the diffusion version of the Associative Network (AN) [6], the Diffusion Associative Network (DAN), where a more general framework of neural learning, which is based in synaptic and volume transmission, is considered.
URI: http://hdl.handle.net/10553/54386
ISBN: 978-3-540-42959-3
354042959X
ISSN: 0302-9743
Fuente: Moreno-Díaz R., Buchberger B., Luis Freire J. (eds) Computer Aided Systems Theory — EUROCAST 2001. EUROCAST 2001. Lecture Notes in Computer Science, vol 2178. Springer, Berlin, Heidelberg
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

5
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

3
actualizado el 25-feb-2024

Visitas

113
actualizado el 31-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.