Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/54355
Título: Non-equivalent partitions of d-triangles with Steiner points
Autores/as: Plaza, Ángel 
Suárez, José P. 
Padrón, Miguel A. 
Clasificación UNESCO: 120601 Construcción de algoritmos
Palabras clave: Steiner points
Triangulation
Bisection
Fecha de publicación: 2004
Publicación seriada: Applied Numerical Mathematics 
Conferencia: 1st Meeting on Applied Scientific Computing and Tools 
Resumen: In this paper we present lower and upper bounds for the number of equivalence classes of d-triangles with additional or Steiner points. We also study the number of possible partitions that may appear by bisecting a tetrahedron with Steiner points at the midpoints of its edges. This problem arises, for example, when refining a 3D triangulation by bisecting the tetrahedra. To begin with, we look at the analogous 2D case, and then the 1-irregular tetrahedra (tetrahedra with at most one Steiner point on each edge) are classified into equivalence classes, and each element of the class is subdivided into several non-equivalent bisection-based partitions which are also studied. Finally, as an example of the application of refinement and coarsening of 3D bisection-based algorithms, a simulation evolution problem is shown.
URI: http://hdl.handle.net/10553/54355
ISSN: 0168-9274
DOI: 10.1016/j.apnum.2003.12.017
Fuente: Applied Numerical Mathematics [ISSN 0168-9274], v. 49 (3-4), p. 415-430
Colección:Actas de congresos
Vista completa

Visitas

118
actualizado el 31-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.