Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/53938
Campo DC Valoridioma
dc.contributor.authorGiachetti, Thomasen_US
dc.contributor.authorParis ,Raphael Michelen_US
dc.contributor.authorKelfoun, Karimen_US
dc.contributor.authorJose Perez-Torrado, Franciscoen_US
dc.contributor.otherGiachetti, Thomas-
dc.contributor.otherPerez-Torrado, Francisco Jose-
dc.contributor.otherParis, Raphael-
dc.date.accessioned2019-02-04T18:54:28Z-
dc.date.available2019-02-04T18:54:28Z-
dc.date.issued2011en_US
dc.identifier.issn0025-3227en_US
dc.identifier.urihttp://hdl.handle.net/10553/53938-
dc.description.abstractSome tsunami deposits have been previously identified 41–188 m asl in the Agaete Valley on the northwest coast of the island of Gran Canaria, in the Canary Islands. In this paper, the Güìmar sector collapse (Tenerife, ~ 0.83 Ma), and its expected associated tsunami that is thought to be at the origin of these tsunami deposits, are tentatively reproduced using a two-fluid numerical code. Two failure processes are considered: 1) the whole 44 km3 volume is released in one go, or 2) the 44 km3 are released in five retrogressive failures of equal volume, occurring each 120 s. In both cases, two rheologies are used to simulate the landslide propagation: the Mohr–Coulomb frictional law and a constant retarding stress. Two hypotheses concerning the origin of the offshore mapped deposits are also considered: 1) the mapped deposits are the direct result of a single collapse event occurring either in one go or by near retrogressive failures, or 2) the mapped deposits result from a collapse followed by later partial remobilization of its deposits. In all scenarios, the subaerial destabilisation spreads out eastwards into the sea, triggering waves 390–500 m high when considering a collapse in one go, and 225–380 m when considering successive retrogressive failures. The first wave reaches the coast of Gran Canaria, located at 70 km from the scar, 495–560 s after the collapse onset, whatever the scenario considered. Water enters the Agaete Valley on Gran Canaria 555–690 s after the onset of collapse, reaching up to 9.1 km inland for a collapse in one go, and 5.0 km when considering five retrogressive failures. In this valley, the simulated waves inundate all the locations where tsunami deposits were identified, with the flow depth measured reaching a maximum of 50 m (collapse by retrogressive failures) to 150 m (collapse in one go) at these particular places. The directions of maximum kinetic energy as a function of time for the simulated waves are consistent with the current directions recorded by the cobble fabrics present in the run-up and backwash layers of the tsunami deposits at one outcrop. This study shows that the major source of uncertainty when reproducing landslide-triggered tsunamis is linked to the way the landslide happens (failure mechanisms), that should be thus more precisely taken into account for landslide-triggered-tsunamis hazard assessment. The rheology chosen to simulate the landslide propagation has only a second-order impact on the produced waves.en_US
dc.languageengen_US
dc.publisher0025-3227-
dc.relation.ispartofMarine Geologyen_US
dc.sourceMarine Geology [ISSN 0025-3227], v. 284 (1-4), p. 189-202en_US
dc.subject250621 Vulcanologíaen_US
dc.subject.otherTsunamien_US
dc.subject.otherNumerical modellingen_US
dc.subject.otherDebris avalancheen_US
dc.subject.otherGüìmar flank collapseen_US
dc.subject.otherCanary Islandsen_US
dc.subject.otherTenerifeen_US
dc.subject.otherGran Canariaen_US
dc.subject.otherAgaete Valleyen_US
dc.subject.otherTsunami depositsen_US
dc.subject.otherField-based dataen_US
dc.titleNumerical modelling of the tsunami triggered by the Güímar debris avalanche, Tenerife (Canary Islands): Comparison with field-based dataen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.margeo.2011.03.018
dc.identifier.isi000292359400015-
dcterms.isPartOfMarine Geology-
dcterms.sourceMarine Geology[ISSN 0025-3227],v. 284 (1-4), p. 189-202-
dc.description.lastpage202-
dc.identifier.issue1-4-
dc.description.firstpage189-
dc.relation.volume284-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid2724435-
dc.contributor.daisngid859821-
dc.contributor.daisngid1210517-
dc.contributor.daisngid1111499-
dc.identifier.investigatorRIDE-1469-2013-
dc.identifier.investigatorRIDN-9727-2018-
dc.identifier.investigatorRIDNo ID-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Giachetti, T
dc.contributor.wosstandardWOS:Paris, R
dc.contributor.wosstandardWOS:Kelfoun, K
dc.contributor.wosstandardWOS:Perez-Torrado, FJ
dc.date.coverdateJunio 2011
dc.identifier.ulpgces
dc.description.sjr1,675
dc.description.jcr2,263
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IUNAT: Geología de Terrenos Volcánicos-
crisitem.author.deptIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.deptDepartamento de Física-
crisitem.author.orcid0000-0002-4644-0875-
crisitem.author.parentorgIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.fullNameParis ,Raphael Michel-
crisitem.author.fullNamePérez Torrado, Francisco José-
Colección:Artículos
Vista resumida

Citas de WEB OF SCIENCETM
Citations

62
actualizado el 25-feb-2024

Visitas

104
actualizado el 09-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.