Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/53795
Título: Parallel genetic algorithms for stock market trading rules
Autores/as: Strassburg, Janko
Gonzalez-Martel, Christian 
Alexandrov, Vassil
Palabras clave: Neural-Networks
Profitability
Systems
Fecha de publicación: 2012
Editor/a: 1877-0509
Publicación seriada: Procedia Computer Science 
Conferencia: International Conference on Computational Science (ICCS) 
12th Annual International Conference on Computational Science, ICCS 2012 
Resumen: Finding the best trading rules is a well-known problem in the field of technical analysis of stock markets. One option is to employ genetic algorithms, as they offer valuable characteristics towards retrieving a "good enough" solution in a timely manner. However, depending on the problem size, their application might not be a viable option as the iterative search through a multitude of possible solutions does take considerable time. Even more so if a variety of stocks are to be analysed.In this paper we concentrate on the enhancement of a previously published genetic algorithm for the optimisation of technical trading rules, using example data from the Madrid Stock Exchange General Index (IGBM).
URI: http://hdl.handle.net/10553/53795
ISSN: 1877-0509
DOI: 10.1016/j.procs.2012.04.143
Fuente: Proceedings Of The International Conference On Computational Science, Iccs 2012[ISSN 1877-0509],v. 9, p. 1306-1313
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

19
actualizado el 10-nov-2024

Citas de WEB OF SCIENCETM
Citations

16
actualizado el 10-nov-2024

Visitas

28
actualizado el 27-ene-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.