Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/53795
Título: | Parallel genetic algorithms for stock market trading rules | Autores/as: | Strassburg, Janko Gonzalez-Martel, Christian Alexandrov, Vassil |
Palabras clave: | Neural-Networks Profitability Systems |
Fecha de publicación: | 2012 | Editor/a: | 1877-0509 | Publicación seriada: | Procedia Computer Science | Conferencia: | International Conference on Computational Science (ICCS) 12th Annual International Conference on Computational Science, ICCS 2012 |
Resumen: | Finding the best trading rules is a well-known problem in the field of technical analysis of stock markets. One option is to employ genetic algorithms, as they offer valuable characteristics towards retrieving a "good enough" solution in a timely manner. However, depending on the problem size, their application might not be a viable option as the iterative search through a multitude of possible solutions does take considerable time. Even more so if a variety of stocks are to be analysed.In this paper we concentrate on the enhancement of a previously published genetic algorithm for the optimisation of technical trading rules, using example data from the Madrid Stock Exchange General Index (IGBM). | URI: | http://hdl.handle.net/10553/53795 | ISSN: | 1877-0509 | DOI: | 10.1016/j.procs.2012.04.143 | Fuente: | Proceedings Of The International Conference On Computational Science, Iccs 2012[ISSN 1877-0509],v. 9, p. 1306-1313 |
Colección: | Actas de congresos |
Citas SCOPUSTM
19
actualizado el 10-nov-2024
Citas de WEB OF SCIENCETM
Citations
16
actualizado el 10-nov-2024
Visitas
28
actualizado el 27-ene-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.