Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/53606
Campo DC Valoridioma
dc.contributor.authorShimada, Masayuki
dc.contributor.authorHernandez-Gonzalez, Inmaculada
dc.contributor.authorGonzalez-Robayna, Ignacio
dc.contributor.authorRichards, JoAnne S.
dc.contributor.otherHernandez Gonzalez, Inmaculada
dc.contributor.otherShimada, Masayuki
dc.contributor.otherGonzalez Robayna, Ignacio
dc.date.accessioned2019-02-04T17:24:07Z-
dc.date.available2019-02-04T17:24:07Z-
dc.date.issued2006
dc.identifier.issn0888-8809
dc.identifier.urihttp://hdl.handle.net/10553/53606-
dc.description.abstractThe molecular bridges that link the LH surge with functional changes in cumulus cells that possess few LH receptors are being unraveled. Herein we document that epidermal growth factor ( EGF)- like factors amphiregulin ( Areg), epiregulin ( Ereg), and betacellulin ( Btc) are induced in cumulus oocyte complexes ( COCs) by autocrine and paracrine mechanisms that involve the actions of prostaglandins ( PGs) and progesterone receptor ( PGR). Areg and Ereg mRNA and protein levels were reduced significantly in COCs and ovaries collected from prostaglandin synthase 2 ( Ptgs2) null mice and Pgr null ( PRKO) mice at 4 h and 8 h after human chorionic gonadotropin, respectively. In cultured COCs, FSH/forskolin induced Areg mRNA within 0.5 h that peaked at 4 h, a process blocked by inhibitors of p38MAPK ( SB203580), MAPK kinase (MEK) 1 ( PD98059), and PTGS2 ( NS398) but not protein kinase A ( PKA) ( KT5720). Conversely, AREG but not FSH induced Ptsg2 mRNA at 0.5 h with peak expression of Ptgs2 and Areg mRNAs at 4 h, processes blocked by the EGF receptor tyrosine kinase inhibitor AG1478 ( AG), PD98059, and NS398. PGE2 reversed the inhibitory effects of AG on AREG-induced expression of Areg but not Ptgs2, placing Ptgs2 downstream of EGF-R signaling. Phorbol 12- myristate 13-acetate (PMA) and adenovirally expressed PGRA synergistically induced Areg mRNA in granulosa cells. In COCs, AREG not only induced genes that impact matrix formation but also genes involved in steroidogenesis ( StAR, Cyp11a1) and immune cell-like functions (Pdcd1, Runx1, Cd52). Collectively, FSH-mediated induction of Areg mRNA via p38MAPK precedes AREG induction of Ptgs2 mRNA via ERK1/2. PGs acting via PTGER2 in cumulus cells provide a secondary, autocrine pathway to regulate expression of Areg in COCs showing critical functional links between G protein- coupled receptor and growth factor receptor pathways in ovulating follicles.
dc.publisher0888-8809
dc.relation.ispartofMolecular Endocrinology
dc.sourceMolecular Endocrinology[ISSN 0888-8809],v. 20 (6), p. 1352-1365
dc.subject.otherFollicle-Stimulating-Hormone
dc.subject.otherRibonucleic-Acid Expression
dc.subject.otherLuteinizing-Hormone
dc.subject.otherEndoperoxide Synthase-2
dc.subject.otherMice Lacking
dc.subject.otherMeiotic Resumption
dc.subject.otherOvarian-Follicles
dc.subject.otherGene-Expression
dc.subject.otherFamily-Members
dc.subject.otherProtein
dc.titleParacrine and autocrine regulation of epidermal growth factor-like factors in cumulus oocyte complexes and granulosa cells: Key roles for prostaglandin synthase 2 and progesterone receptor
dc.typeinfo:eu-repo/semantics/Article
dc.typeArticle
dc.identifier.doi10.1210/me.2005-0504
dc.identifier.scopus33744464493
dc.identifier.isi000237806900017
dcterms.isPartOfMolecular Endocrinology
dcterms.sourceMolecular Endocrinology[ISSN 0888-8809],v. 20 (6), p. 1352-1365
dc.contributor.authorscopusid56212657200
dc.contributor.authorscopusid13807439800
dc.contributor.authorscopusid6507425244
dc.contributor.authorscopusid7403707010
dc.description.lastpage1365
dc.identifier.issue6
dc.description.firstpage1352
dc.relation.volume20
dc.type2Artículo
dc.identifier.wosWOS:000237806900017
dc.contributor.daisngid404030
dc.contributor.daisngid2446020
dc.contributor.daisngid2922182
dc.contributor.daisngid63955
dc.contributor.daisngid29401747
dc.identifier.investigatorRIDK-7776-2014
dc.identifier.investigatorRIDQ-3673-2016
dc.identifier.investigatorRIDK-9671-2014
dc.contributor.wosstandardWOS:Shimada, M
dc.contributor.wosstandardWOS:Hernandez-Gonzalez, I
dc.contributor.wosstandardWOS:Gonzalez-Robayna, I
dc.contributor.wosstandardWOS:Richards, JAS
dc.date.coverdateJunio 2006
dc.identifier.ulpgces
dc.description.jcr4,967
dc.description.jcrqQ1
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUIBS: Bioquímica-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología-
crisitem.author.deptGIR IUIBS: Bioquímica-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Bioquímica y Biología Molecular, Fisiología, Genética e Inmunología-
crisitem.author.orcid0000-0001-8937-9034-
crisitem.author.orcid0000-0002-7650-4454-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.fullNameHernández González, Inmaculada Servanda-
crisitem.author.fullNameGonzález Robayna, Ignacio Javier-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

346
actualizado el 21-abr-2024

Citas de WEB OF SCIENCETM
Citations

325
actualizado el 25-feb-2024

Visitas

41
actualizado el 30-dic-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.