Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/52514
Campo DC Valoridioma
dc.contributor.authorOsma, N.en_US
dc.contributor.authorFernández-Urruzola, I.en_US
dc.contributor.authorGómez, M.en_US
dc.contributor.authorMontesdeoca-Esponda, S.en_US
dc.contributor.authorPackard, T. T.en_US
dc.date.accessioned2018-11-28T11:18:09Z-
dc.date.available2018-11-28T11:18:09Z-
dc.date.issued2016en_US
dc.identifier.issn0025-3162en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/52514-
dc.description.abstractOxygen consumption rates (RO2) in the rotifer Brachionus plicatilis and the mysid Leptomysis lingvura during both well-fed conditions and starvation have been modeled using the electron transport system (ETS) activity, bisubstrate kinetics and intracellular concentration of substrates. Furthermore, the influence of the food quality on the respiratory metabolism and metabolite levels has been explored. The highest values of most of the variables both in rotifers and mysids were mainly found on organisms grown on the lipid-rich diet, although no differences were determined between treatments in the response to starvation. Time courses of the RO2 and the concentration of pyridine and adenine nucleotides evidenced a sharp decrease during food shortage and a fast recovery with food restoration, whereas the potential respiration (Φ) remained fairly constant. In general, the modeled RO2 (VO2) predicted with a high degree of success in the in vivo RO2, even though it yielded relatively lower values. Nonetheless, the correlation of the measured RO2 with VO2 during starvation was much better than with the RO2 estimated from ETS measurements and a fixed RO2/Φ ratio. Finally, the observed relationship between the measured RO2 and the adenine nucleotide ADP suggests that the contribution of this nucleotide should be included in future applications of this model.en_US
dc.languageengen_US
dc.relation.ispartofMarine Biologyen_US
dc.sourceMarine Biology [ISSN 0025-3162],v. 163 (146)en_US
dc.subject310801 Bacteriasen_US
dc.subject2401 Biología animal (zoología)en_US
dc.subject.otherKinetic constanten_US
dc.subject.otherIntracellular concentrationen_US
dc.subject.otherOxygen consumption rateen_US
dc.subject.otherElectron transport systemen_US
dc.subject.otherPyridine nucleotideen_US
dc.subject.otherElectron-Transport-Systemen_US
dc.subject.otherNicotinamide-Adenine-Dinucleotideen_US
dc.subject.otherBacterium Pseudomonas-Nauticaen_US
dc.subject.otherCopepod Acartia-Tonsaen_US
dc.subject.otherLaboratory Conditionsen_US
dc.subject.otherRespirationen_US
dc.subject.otherStarvationen_US
dc.subject.otherMitochondriaen_US
dc.subject.otherPlanktonen_US
dc.subject.otherEcologyen_US
dc.titlePredicting in vivo oxygen consumption rate from ETS activity and bisubstrate enzyme kinetics in cultured marine zooplanktonen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00227-016-2923-xen_US
dc.identifier.scopus84975316938-
dc.identifier.isi000379528900001-
dc.contributor.authorscopusid56030306900-
dc.contributor.authorscopusid48461211200-
dc.contributor.authorscopusid7401734371-
dc.contributor.authorscopusid57201412739-
dc.contributor.authorscopusid7004249480-
dc.identifier.eissn1432-1793-
dc.identifier.issue7-
dc.relation.volume163en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid4260292-
dc.contributor.daisngid4236772-
dc.contributor.daisngid1273639-
dc.contributor.daisngid2366921-
dc.contributor.daisngid311411-
dc.description.numberofpages14en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Osma, N-
dc.contributor.wosstandardWOS:Fernandez-Urruzola, I-
dc.contributor.wosstandardWOS:Gomez, M-
dc.contributor.wosstandardWOS:Montesdeoca-Esponda, S-
dc.contributor.wosstandardWOS:Packard, TT-
dc.date.coverdateJulio 2016en_US
dc.identifier.ulpgces
dc.description.sjr1,198
dc.description.jcr2,136
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR ECOAQUA: Ecofisiología de Organismos Marinos-
crisitem.author.deptIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.deptDepartamento de Biología-
crisitem.author.deptGIR IUNAT: Análisis Químico Medioambiental-
crisitem.author.deptIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.deptDepartamento de Química-
crisitem.author.deptGIR ECOAQUA: Ecofisiología de Organismos Marinos-
crisitem.author.deptIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.orcid0000-0001-7287-3503-
crisitem.author.orcid0000-0002-7396-6493-
crisitem.author.orcid0000-0001-9872-5293-
crisitem.author.orcid0000-0002-5880-1199-
crisitem.author.parentorgIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.parentorgIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.parentorgIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.fullNameOsma Prado, Natalia-
crisitem.author.fullNameFernández Urruzola, Igor-
crisitem.author.fullNameGómez Cabrera, María Milagrosa-
crisitem.author.fullNameMontesdeoca Esponda, Sarah-
crisitem.author.fullNamePackard, Theodore Train-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

11
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

9
actualizado el 17-nov-2024

Visitas

66
actualizado el 10-feb-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.