Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/52493
DC FieldValueLanguage
dc.contributor.authorFalcon, Sergioen_US
dc.date.accessioned2018-11-27T14:00:49Z-
dc.date.available2018-11-27T14:00:49Z-
dc.date.issued2016en_US
dc.identifier.issn0960-0779en_US
dc.identifier.urihttp://hdl.handle.net/10553/52493-
dc.description.abstractIn this paper we apply the concept of difference relation to the sequences of k-Fibonacci numbers. We will obtain general formulas to find any term of the ith k-Fibonacci difference sequence from the initial k-Fibonacci numbers. We also find formulas for the sum of the elements of these new sequences as well as their generating functions. Finally, we study the k-Fibonacci Newton polynomial interpolation.en_US
dc.languageengen_US
dc.relation.ispartofChaos, Solitons and Fractalsen_US
dc.sourceChaos, Solitons and Fractals[ISSN 0960-0779],v. 87, p. 153-157en_US
dc.subject12 Matemáticasen_US
dc.subject.otherBinet identityen_US
dc.subject.otherFinite differenceen_US
dc.subject.otherk-Fibonacci numbersen_US
dc.subject.otherPolynomial interpolationen_US
dc.subject.other11B39en_US
dc.subject.other11D68en_US
dc.titleThe k-Fibonacci difference sequencesen_US
dc.typeinfo:eu-repo/semantics/reviewes
dc.typeArticlees
dc.identifier.doi10.1016/j.chaos.2016.03.038
dc.identifier.scopus84964053872
dc.identifier.isi000377229500018
dc.contributor.authorscopusid6602997880
dc.description.lastpage157-
dc.description.firstpage153-
dc.relation.volume87-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Reseñaen_US
dc.contributor.daisngid809328
dc.contributor.wosstandardWOS:Falcon, S
dc.date.coverdateJunio 2016
dc.identifier.ulpgces
dc.description.sjr0,53
dc.description.jcr1,455
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.orcid0000-0001-9917-3101-
crisitem.author.fullNameFalcón Santana, Sergio-
Appears in Collections:Reseña
Show simple item record

SCOPUSTM   
Citations

10
checked on Dec 1, 2024

WEB OF SCIENCETM
Citations

8
checked on Nov 24, 2024

Page view(s)

26
checked on Jul 22, 2023

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.