Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/52452
Título: Oxygen saturation and RR intervals feature selection for sleep apnea detection
Autores/as: Ravelo-García, Antonio G. 
Kraemer, Jan F.
Navarro-Mesa, Juan L. 
Hernández-Pérez, Eduardo 
Navarro-Esteva, Javier
Juliá-Serdá, Gabriel
Penzel, Thomas
Wessel, Niels
Clasificación UNESCO: 3314 Tecnología médica
Palabras clave: Sleep apnea
Oxygen saturation
RR intervals
Feature selection
Fecha de publicación: 2015
Publicación seriada: Entropy 
Resumen: A diagnostic system for sleep apnea based on oxygen saturation and RR intervals obtained from the EKG (electrocardiogram) is proposed with the goal to detect and quantify minute long segments of sleep with breathing pauses. We measured the discriminative capacity of combinations of features obtained from RR series and oximetry to evaluate improvements of the performance compared to oximetry-based features alone. Time and frequency domain variables derived from oxygen saturation (SpO2) as well as linear and non-linear variables describing the RR series have been explored in recordings from 70 patients with suspected sleep apnea. We applied forward feature selection in order to select a minimal set of variables that are able to locate patterns indicating respiratory pauses. Linear discriminant analysis (LDA) was used to classify the presence of apnea during specific segments. The system will finally provide a global score indicating the presence of clinically significant apnea integrating the segment based apnea detection. LDA results in an accuracy of 87%; sensitivity of 76% and specificity of 91% (AUC = 0.90) with a global classification of 97% when only oxygen saturation is used. In case of additionally including features from the RR series; the system performance improves to an accuracy of 87%; sensitivity of 73% and specificity of 92% (AUC = 0.92), with a global classification rate of 100%.
URI: http://hdl.handle.net/10553/52452
ISSN: 1099-4300
DOI: 10.3390/e17052932
Fuente: Entropy,v. 17, p. 2932-2957
Colección:Artículos
miniatura
Adobe PDF (1,91 MB)
Vista completa

Citas SCOPUSTM   

48
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

40
actualizado el 17-nov-2024

Visitas

96
actualizado el 22-sep-2024

Descargas

67
actualizado el 22-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.