Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/52392
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | de Blasio, Gabriel | en_US |
dc.contributor.author | Quesada-Arencibia, Alexis | en_US |
dc.contributor.author | García, Carmelo R. | en_US |
dc.contributor.author | Moreno-Díaz, Roberto | en_US |
dc.contributor.author | Rodríguez-Rodríguez, Jose Carlos | en_US |
dc.date.accessioned | 2018-11-25T19:57:09Z | - |
dc.date.available | 2018-11-25T19:57:09Z | - |
dc.date.issued | 2017 | en_US |
dc.identifier.isbn | 978-3-319-67584-8 | en_US |
dc.identifier.issn | 0302-9743 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/52392 | - |
dc.description.abstract | In this work, we provide an analysis of BLE channel-separate fingerprinting using different distance and similarity measures. In a 168 m2 testbed, 12 beacons with Eddystone and iBeacon protocols set were deployed, taking into account the orientation of users and considering 10 distance/similarity measures. We have observed that there is an orientation that offers the best positioning performance with the combination of iBeacon protocol, channel 38 and Mahalanobis distance. Taking 8 samples in the online phase, accuracy values obtained are in the range 1.28 m–1.88 m, and precision values are within 1.90 m–3.76 m or less, 90% of the time and depending which orientation the observer is facing. | en_US |
dc.language | eng | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Lecture Notes in Computer Science | en_US |
dc.source | Ubiquitous Computing and Ambient Intelligence. UCAmI 2017. Lecture Notes in Computer Science, v. 10586 LNCS, p. 213-224 | en_US |
dc.subject | 1203 Ciencia de los ordenadores | en_US |
dc.title | Analysis of distance and similarity metrics in indoor positioning based on bluetooth low energy | en_US |
dc.type | info:eu-repo/semantics/bookPart | en_US |
dc.type | bookPart | en_US |
dc.relation.conference | 11th International Conference on Ubiquitous Computing and Ambient Intelligence, UCAmI 2017 | |
dc.identifier.doi | 10.1007/978-3-319-67585-5_23 | en_US |
dc.identifier.scopus | 85031402896 | - |
dc.contributor.authorscopusid | 8935044600 | - |
dc.contributor.authorscopusid | 13006053800 | - |
dc.contributor.authorscopusid | 7401486323 | - |
dc.contributor.authorscopusid | 24543463600 | - |
dc.contributor.authorscopusid | 8925188600 | - |
dc.description.lastpage | 224 | en_US |
dc.description.firstpage | 213 | en_US |
dc.relation.volume | 10586 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Capítulo de libro | en_US |
dc.identifier.eisbn | 978-3-319-67585-5 | - |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Enero 2017 | en_US |
dc.identifier.supplement | 0302-9743 | - |
dc.identifier.conferenceid | events121613 | - |
dc.identifier.ulpgc | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.description.sjr | 0,295 | |
dc.description.sjrq | Q2 | |
dc.description.spiq | Q1 | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.event.eventsstartdate | 07-11-2017 | - |
crisitem.event.eventsenddate | 10-11-2017 | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0002-6233-567X | - |
crisitem.author.orcid | 0000-0002-8313-5124 | - |
crisitem.author.orcid | 0000-0003-1433-3730 | - |
crisitem.author.orcid | 0000-0002-5314-6033 | - |
crisitem.author.orcid | 0000-0003-2186-3094 | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.fullName | De Blasio, Gabriele Salvatore | - |
crisitem.author.fullName | Quesada Arencibia, Francisco Alexis | - |
crisitem.author.fullName | García Rodríguez, Carmelo Rubén | - |
crisitem.author.fullName | Moreno Díaz, Roberto | - |
crisitem.author.fullName | Rodríguez Rodríguez, José Carlos | - |
Colección: | Capítulo de libro |
Citas SCOPUSTM
4
actualizado el 10-nov-2024
Citas de WEB OF SCIENCETM
Citations
4
actualizado el 10-nov-2024
Visitas
133
actualizado el 16-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.