Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/52090
Título: | Interactions of ionic liquids and acetone: Thermodynamic properties, quantum-chemical calculations, and NMR analysis | Autores/as: | Ruiz, Elia Ferro, Victor R. Palomar, Jose Ortega, Juan Rodriguez, Juan Jose |
Palabras clave: | Hydrogen-Bonding Interactions Binary-Systems Cosmo-Rs Extractive Distillation Excess Enthalpy, et al. |
Fecha de publicación: | 2013 | Editor/a: | 1520-6106 | Publicación seriada: | Journal of Physical Chemistry B | Resumen: | The interactions between ionic liquids (ILs) and acetone have been studied to obtain a further understanding of the behavior of their mixtures, which generally give place to an exothermic process, mutual miscibility, and negative deviation of Raoult's law. COSMO-RS was used as a suitable computational method to systematically analyze the excess enthalpy of IL-acetone systems (>300), in terms of the intermolecular interactions contributing to the mixture behavior. Spectroscopic and COSMO-RS results indicated that acetone, as a polar compound with strong hydrogen bond acceptor character, in most cases, establishes favorable hydrogen bonding with ILs. This interaction is strengthened by the presence of an acidic cation and an anion with dispersed charge and non-HB acceptor character in the IL. COSMO-RS predictions indicated that gas-liquid and vapor-liquid equilibrium data for IL-acetone systems can be finely tuned by the IL selection, that is, acting on the intermolecular interactions between the molecular and ionic species in the liquid phase. NMR measurements for IL-acetone mixtures at different concentrations were also carried out. Quantum-chemical calculations by using molecular dusters of acetone and IL species were finally performed. These results provided additional evidence of the main role played by hydrogen bonding in the behavior of systems containing ILs and HB acceptor compounds, such as acetone. | URI: | http://hdl.handle.net/10553/52090 | ISSN: | 1520-6106 | DOI: | 10.1021/jp402331y | Fuente: | Journal of Physical Chemistry B[ISSN 1520-6106],v. 117, p. 7388-7398 |
Colección: | Artículos |
Citas SCOPUSTM
70
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
65
actualizado el 17-nov-2024
Visitas
67
actualizado el 21-sep-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.