Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/51613
Título: Local refinement of simplicial grids based on the skeleton
Autores/as: Plaza, A. 
Carey, G. F.
Clasificación UNESCO: 120601 Construcción de algoritmos
Palabras clave: Grid refinement
3D bisection
Tetrahedra
Adaptivity
Fecha de publicación: 2000
Publicación seriada: Applied Numerical Mathematics 
Resumen: In this paper we present a novel approach to the development of a class of local simplicial refinement strategies. The algorithm in two dimensions first subdivides certain edges. Then each triangle, if refined, is subdivided in two, three or four subelements depending on the previous division of its edges. Similarly, in three dimensions the algorithm begins by subdividing the two-dimensional triangulation composed by the faces of the tetrahedra (the skeleton) and then subdividing each tetrahedron in a compatible manner with the division of the faces. The complexity of the algorithm is linear in the number of added nodes. The algorithm is fully automatic and has been implemented to achieve global as well as local refinements. The numerical results obtained appear to confirm that the measure of degeneracy of subtetrahedra is bounded, and converges asymptotically to a fixed value when the refinement proceeds.
URI: http://hdl.handle.net/10553/51613
ISSN: 0168-9274
DOI: 10.1016/S0168-9274(99)00022-7
Fuente: Applied Numerical Mathematics [ISSN 0168-9274], v. 32 (2), p. 195-218
Colección:Artículos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.