Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/50866
Título: Oxygen consumption in the marine bacterium Pseudomonas nautica predicted from ETS activity and bisubstrate enzyme kinetics
Autores/as: Packard, T. T. 
Berdalet, E.
Blasco, D.
Roy, S. O.
St-Amand, L.
Lagacé, B.
Lee, K.
Gagné, J. P.
Clasificación UNESCO: 2302 Bioquímica
251001 Oceanografía biológica
Palabras clave: ETS activity
Fecha de publicación: 1996
Editor/a: 0142-7873
Publicación seriada: Journal of Plankton Research 
Resumen: The respiratory O2 consumption in aerobic bacterial cultures has been modeled from the time profiles of the in vitro activity of the respiratory electron transfer system (ETS), the bacterial protein and the concentration of the carbon source in the cultures. The model was based on the concept of bisubstrate kinetic control of the ETS throughout the exponential, steady-state and senescent phases of the cultures. In the exponential phase, the measured rates of O2 consumption and the in vitro ETS activity were closely coupled, but in the senescent phase, they were uncoupled. The in vitro ETS activity remained high even after the culture's carbon source was exhausted, while the O2 consumption fell to low levels. Based on the hypothesis that this uncoupling was caused by limitation of the intracellular ETS substrates (NADH and NADPH), a semi-empirical model incorporating a bisubstrate enzyme kinetics algorithm was formulated and fitted to the observations of the experiments. The model predicted the rate of O2 consumption throughout the different phases of the cultures with an r2 > 0.92 (n = 9, P < 0.001) using physiologically realistic Michaelis and dissociation constants. These results suggest that plankton respiration in the field could be assessed more accurately than before by measuring the intracellular ETS substrates (NADH and NADPH), in addition to ETS activity, in plankton.
URI: http://hdl.handle.net/10553/50866
ISSN: 0142-7873
DOI: 10.1093/plankt/18.10.1819
Fuente: Journal of Plankton Research [ISSN 0142-7873], v. 18, p. 1819-1835
Colección:Artículos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.