Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/50529
DC FieldValueLanguage
dc.contributor.authorRamírez, Penélope
dc.contributor.authorCarta, José Antonio
dc.date.accessioned2018-11-24T16:45:12Z-
dc.date.available2018-11-24T16:45:12Z-
dc.date.issued2005
dc.identifier.issn0196-8904
dc.identifier.urihttp://hdl.handle.net/10553/50529-
dc.description.abstractThis paper proposes the use of a methodology to estimate the parameters of the Weibull wind speed probability density distribution and its standard errors. This methodology is applied in the analysis of the influence that the use of autocorrelated wind speeds has on the estimation of the aforementioned parameters and on the approximate confidence bounds of the wind power density function and other statistic functions. A joint contrast test of the first autocorrelation coefficients is performed to estimate the wind speed sampling interval that allows acceptance of the hypothesis of independence. The maximum likelihood method is used to estimate the Weibull scale and shape parameters and the Anderson-Darling test is used to see whether a sample of wind data comes from a population with a Weibull distribution. This methodology is applied to the hourly mean wind speeds recorded over a six year period at a weather station located in the Canarian Archipelago. The results show that the use of autocorrelated successive hourly mean wind speeds, though invalidating all of the usual statistical tests, has no appreciable effect on the shape of the probability density distribution. However, as the calculated uncertainties obtained from dependent or correlated wind speed data for the commonly used wind energy statistic functions are over-optimistic, the use of a sample of independent wind speed data is recommended in this paper to estimate these uncertainties. Along these lines, a description is given of the algorithm of the procedure proposed in this paper to select this sample. (c) 2004 Elsevier Ltd. All rights reserved.
dc.publisher0196-8904
dc.relation.ispartofEnergy Conversion and Management
dc.sourceEnergy Conversion and Management[ISSN 0196-8904],v. 46, p. 2419-2438
dc.subject.otherStatistics
dc.subject.otherSuitability
dc.subject.otherVelocity
dc.subject.otherAverage
dc.subject.otherModels
dc.titleInfluence of the data sampling interval in the estimation of the parameters of the Weibull wind speed probability density distribution: A case study
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1016/j.enconman.2004.11.004
dc.identifier.scopus17744370511
dc.identifier.isi000229413300007
dc.contributor.authorscopusid8334207300
dc.contributor.authorscopusid7003652043
dc.description.lastpage2438
dc.description.firstpage2419
dc.relation.volume46
dc.type2Artículoes
dc.contributor.daisngid4727747
dc.contributor.daisngid1198474
dc.contributor.wosstandardWOS:Ramirez, P
dc.contributor.wosstandardWOS:Carta, JA
dc.date.coverdateSeptiembre 2005
dc.identifier.ulpgces
dc.description.jcr1,244
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.orcid0000-0003-1379-0075-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameCarta González, José Antonio-
Appears in Collections:Artículos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.