Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/50293
Título: Identifying communities in social media with deep learning
Autores/as: Barros, Pedro
Cardoso-Pereira, Isadora
Barbosa, Keila
Frery, Alejandro C. 
Allende-Cid, Héctor
Martins, Ivan
Ramos, Heitor S.
Clasificación UNESCO: 3325 Tecnología de las telecomunicaciones
Palabras clave: Community detection
Deep Learning
Text classification
Convolutional networks
Autoencoder
Fecha de publicación: 2018
Editor/a: Springer 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 10th International Conference on Social Computing and Social Media (SCSM 2018) 
Resumen: This work aims at analyzing twitter data to identify communities of Brazilian Senators. To do so, we collected data from 76 Brazilian Senators and used autoencoder and bi-gram to the content of tweets to find similar subjects and hence cluster the senators into groups. Thereafter, we applied an unsupervised sentiment analysis to identify the communities of senators that share similar sentiments about a selected number of relevant topics. We find that is able to create meaningful clusters of tweets of similar contents. We found 13 topics all of them relevant to the current Brazilian political scenario. The unsupervised sentiment analysis shows that, as a result of the complex political system (with multiple parties), many senators were identified as independent (19) and only one (out of 11) community can be classified as a community of senators that support the current government. All other detected communities are not relevant.
URI: http://hdl.handle.net/10553/50293
ISBN: 978-3-319-91484-8
ISSN: 0302-9743
DOI: 10.1007/978-3-319-91485-5_13
Fuente: Social Computing and Social Media. Technologies and Analytics. SCSM 2018. Lecture Notes in Computer Science, v. 10914 LNCS, p. 171-182
Colección:Capítulo de libro
Vista completa

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 24-nov-2024

Visitas

38
actualizado el 30-sep-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.