Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/49415
DC FieldValueLanguage
dc.contributor.authorMingarelli, Angelo B.en_US
dc.contributor.authorSadarangani, Kishinen_US
dc.date.accessioned2018-11-24T07:12:24Z-
dc.date.available2018-11-24T07:12:24Z-
dc.date.issued2007en_US
dc.identifier.issn1072-6691en_US
dc.identifier.urihttp://hdl.handle.net/10553/49415-
dc.description.abstractUsing a modified version of Schauder's fixed point theorem, measures of non-compactness and classical techniques, we provide new general results on the asymptotic behavior and the non-oscillation of second order scalar nonlinear differential equations on a half-axis. In addition, we extend the methods and present new similar results for integral equations and Volterra-Stieltjes integral equations, a framework whose benefits include the unification of second order difference and differential equations. In so doing, we enlarge the class of nonlinearities and in some cases remove the distinction between superlinear, sublinear, and linear differential equations that is normally found in the literature. An update of papers, past and present, in the theory of Volterra-Stieltjes integral equations is also presented.en_US
dc.languageengen_US
dc.relation.ispartofElectronic Journal of Differential Equationsen_US
dc.sourceElectronic Journal of Differential Equations, v. 2007, p. 1-40en_US
dc.subject12 Matemáticasen_US
dc.subject.otherAsymptotically constanten_US
dc.subject.otherAsymptotically linearen_US
dc.subject.otherAtkinson's theoremen_US
dc.subject.otherDifferential inequalitiesen_US
dc.subject.otherFixed point theoremen_US
dc.subject.otherIntegral equationsen_US
dc.subject.otherIntegral inequalitiesen_US
dc.subject.otherNon-oscillationen_US
dc.subject.otherNonlinearen_US
dc.subject.otherOscillationen_US
dc.subject.otherSecond order differential equationsen_US
dc.subject.otherVolterra-Stieltjesen_US
dc.titleAsymptotic solutions of forced nonlinear second order differential equations and their extensionsen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doiarXiv:math/0703023en_US
dc.identifier.scopus33947150896-
dc.identifier.isi000208974600040-
dc.contributor.authorscopusid6602503915-
dc.contributor.authorscopusid6603285515-
dc.description.lastpage40-
dc.description.firstpage1-
dc.relation.volume2007-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid739495
dc.contributor.daisngid298123
dc.contributor.wosstandardWOS:Mingarelli, AB
dc.contributor.wosstandardWOS:Sadarangani, K
dc.date.coverdateMarzo 2007
dc.identifier.ulpgces
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptAnálisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-7090-0114-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.fullNameSadarangani Sadarangani, Kishin Bhagwands-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

13
checked on May 9, 2021

WEB OF SCIENCETM
Citations

4
checked on May 9, 2021

Page view(s)

11
checked on May 10, 2021

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.