Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/49020
Título: Distribution of image processing applications on a heterogeneous workstation network: modeling, load balancing, and experimental results
Autores/as: Hernández-Sosa, Daniel 
Cabrera-Gámez, Jorge 
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Knowledge based vision systems (Kbvs)
Parallel virtual machine (Pvm)
Distributed image processing
Load-balancing
Fecha de publicación: 1997
Publicación seriada: Proceedings of SPIE - The International Society for Optical Engineering 
Conferencia: Parallel and Distributed Methods for Image Processing 
Resumen: This work analyzes the computation distribution in applications generated by a multilevel knowledge-based system for image processing called SVEX. This distribution has been carried out on a heterogeneous workstation network, trying to take advantage of the availability and frequent infra- utilization of this computational resource. The parallelization is based on message-passing tool parallel virtual machine (PVM). Firstly SVEX and its computational scheme are described, detailing the structure of the first level (the pixel processor). Then different distribution paradigms are studied, selecting for its implementation the parallelism based on the data. Considering this alterative, the research addresses two fundamental problems: analysis of basic load-balancing schemes and obtaining a model for predicting parallelization behavior as new machines are added to the computational network. The results produced in a series of experiments permit the comparison of load-balancing schemes and the validation of the proposed model. The experiments include the processing of both static images and sequences.
URI: http://hdl.handle.net/10553/49020
ISSN: 0277-786X
DOI: 10.1117/12.279615
Fuente: Proceedings of SPIE - The International Society for Optical Engineering [ISSN 0277-786X], v. 3166, p. 176-185
Colección:Actas de congresos
Vista completa

Visitas

111
actualizado el 07-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.