Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/48809
Título: Left Ventricle wall extraction in cardiac MRI using region based level sets and vector field convolution
Autores/as: Bhan, Anupama
Goyal, Ayush
Dutta, Malay Kishore
Sankhla, Dushyant
Khanna, Pankhuri
Travieso, Carlos M. 
Alonso Hernandez, Jesus B. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Constrained Active Contours
Shape
Tracking
Segmentation
Models, et al.
Fecha de publicación: 2015
Publicación seriada: IWOBI 2015 - 2015 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, Proceedings
Conferencia: 4th International Work Conference on Bio-Inspired Intelligence, IWOBI 2015 
Resumen: Left Ventricle imaging using short-axis MRI sequences is considered as an important tool used for evaluating cardiac function by calculating important clinical cardiac parameters. This requires manual tracing of LV wall which is subjective, tedious and time-consuming process. This paper presents semi-automatic method for left ventricle inner wall (endocardium) segmentation. This paper focuses on segmenting one complete cardiac cycle without any user intervention. The method used in this paper is region based level sets and vector field convolution active contour model out of which the later method has significantly achieved the better segmentation results. The end systolic and end diastolic volume is calculated by both the methods. The methods are tested on many images and time consumption is reduced using vector field convolution which takes only 30 iterations for segmenting one image per slice. The clinical parameters end diastolic volume, end systolic volume and ejection fraction values obtained from both methods are compared with the values of manually segmented images. The value obtained from vector field convolution gives a closer value to manual segmentation which proves the accuracy of the method and can be considered clinically significant. This semi-automatic approach provides cardiac radiologists a practical method for an accurate segmentation of left ventricle.
URI: http://hdl.handle.net/10553/48809
ISBN: 9781479961740
DOI: 10.1109/IWOBI.2015.7160156
Fuente: IWOBI 2015 - 2015 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, Proceedings (7160156), p. 133-138
Colección:Actas de congresos
miniatura
Adobe PDF (637,33 kB)
Vista completa

Citas SCOPUSTM   

2
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

2
actualizado el 25-feb-2024

Visitas

27
actualizado el 27-ene-2024

Descargas

30
actualizado el 27-ene-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.