Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/48809
Título: | Left Ventricle wall extraction in cardiac MRI using region based level sets and vector field convolution | Autores/as: | Bhan, Anupama Goyal, Ayush Dutta, Malay Kishore Sankhla, Dushyant Khanna, Pankhuri Travieso, Carlos M. Alonso Hernandez, Jesus B. |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Constrained Active Contours Shape Tracking Segmentation Models, et al. |
Fecha de publicación: | 2015 | Publicación seriada: | IWOBI 2015 - 2015 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, Proceedings | Conferencia: | 4th International Work Conference on Bio-Inspired Intelligence, IWOBI 2015 | Resumen: | Left Ventricle imaging using short-axis MRI sequences is considered as an important tool used for evaluating cardiac function by calculating important clinical cardiac parameters. This requires manual tracing of LV wall which is subjective, tedious and time-consuming process. This paper presents semi-automatic method for left ventricle inner wall (endocardium) segmentation. This paper focuses on segmenting one complete cardiac cycle without any user intervention. The method used in this paper is region based level sets and vector field convolution active contour model out of which the later method has significantly achieved the better segmentation results. The end systolic and end diastolic volume is calculated by both the methods. The methods are tested on many images and time consumption is reduced using vector field convolution which takes only 30 iterations for segmenting one image per slice. The clinical parameters end diastolic volume, end systolic volume and ejection fraction values obtained from both methods are compared with the values of manually segmented images. The value obtained from vector field convolution gives a closer value to manual segmentation which proves the accuracy of the method and can be considered clinically significant. This semi-automatic approach provides cardiac radiologists a practical method for an accurate segmentation of left ventricle. | URI: | http://hdl.handle.net/10553/48809 | ISBN: | 9781479961740 | DOI: | 10.1109/IWOBI.2015.7160156 | Fuente: | IWOBI 2015 - 2015 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, Proceedings (7160156), p. 133-138 |
Colección: | Actas de congresos |
Citas SCOPUSTM
2
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
2
actualizado el 25-feb-2024
Visitas
27
actualizado el 27-ene-2024
Descargas
30
actualizado el 27-ene-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.