Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/48689
Title: Bayesian segmentation and clustering for determining cloud mask images
Authors: Barreto, D.
Murtagh, F.
Marcello, J. 
UNESCO Clasification: 250616 Teledetección (Geología)
Keywords: Bayes factor
multiband image
Markov model
Gaussian mixture model
Segmentation, et al
Issue Date: 2002
Journal: Proceedings of SPIE - The International Society for Optical Engineering 
Conference: Opto-Ireland 2002: Optical metrology, Imaging, and Machine Vision 
Abstract: We assess both marginal density clustering, and spatial clustering using a Markov random field, on multiband Earth observation data. We use a Bayes factor assessment procedure in all cases. We find that the spatial model leads to better results, although the non-spatial clustering achieves a better false alarm rate.
URI: http://hdl.handle.net/10553/48689
ISSN: 0277-786X
DOI: 10.1117/12.463768
Source: Proceedings of SPIE - The International Society for Optical Engineering[ISSN 0277-786X],v. 4877, p. 144-155
Appears in Collections:Actas de congresos
Thumbnail
Adobe PDF (604,35 kB)
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.