Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/48308
Title: Single and multiple glider path planning using an optimization-based approach
Authors: Fernández-Perdomo, Enrique
Hernández-Sosa, Daniel 
Isern-González, Josep 
Cabrera-Gámez, Jorge 
Domínguez-Brito, Antonio C. 
Prieto-Marañón, Víctor
UNESCO Clasification: 120304 Inteligencia artificial
120326 Simulación
Issue Date: 2011
Project: Tecnicas de Visión Para la Interacción en Entornos de Interior Con Elaboración Mapas Cognitivos en Sistemas Perceptuales Heterogéneos. 
Journal: Oceans. Conference Record 
Conference: IEEE OCEANS Conference 
OCEANS 2011 IEEE - Spain 
Abstract: Path planning for Unmanned Underwater Vehicles (UUVs) is a key issue for the success and efficiency of the missions these vehicles perform. This problem is very challenging, because it must cope with dynamic and uncertain models both for the vehicle and for the environment. In the case of ocean gliders, this aspect is critical due to the strong influence of ocean currents on the glider navigation. In this paper, we present a novel path planning scheme for gliders based on iterative optimization that shows promising results on realistic simulations, including highly time-dependent ocean currents. This method models the glider as an intelligent agent that senses the ocean currents speed and direction, and generates an path according to the predefined objectives. The method can be easily configured and adapted to various optimization problems. Here, we include an example of coordinated path planning, in which the paths of a fleet of gliders is optimized, subject to constraints. Also, the proposal reflects accurately the physical vehicle navigation and gives a superior performance when compared with other approaches.
URI: http://hdl.handle.net/10553/48308
ISBN: 978-1-4577-0086-6
ISSN: 0197-7385
DOI: 10.1109/Oceans-Spain.2011.6003641
Source: OCEANS 2011 IEEE - Spain (6003641)
Appears in Collections:Actas de congresos
Show full item record

SCOPUSTM   
Citations

11
checked on Oct 13, 2024

Page view(s)

91
checked on Jan 27, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.