Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/48262
Title: | The effect of ordering on the convergence of the conjugate gradient method for solving preconditioned shifted linear systems | Authors: | Florez, E. García, M. D. Suárez Sarmiento, Antonio Félix Sarmiento, H. |
UNESCO Clasification: | 12 Matemáticas 1206 Análisis numérico |
Keywords: | Approximate inverses Conjugate gradient Incomplete factorization Ordering Preconditioning, et al |
Issue Date: | 2006 | Conference: | 5th International Conference on Engineering Computational Technology, ECT 2006 | Abstract: | In this paper we study the effect of ordering in the preconditioning of shifted linear systems with matrices depending on a parameter, i.e., A ε χ ε = b ε with A ε = M + ε N symmetric positive definite. We construct two types of preconditioners, both of them dependent on ". We start from a factorized approximate inverse or from an incomplete Cholesky factorization of matrix M, respectively. Although the beneficial effect of the ordering on the convergence of iterative solvers with these preconditioners have been widely studied, there is no evidence of this effect when they are updated in shifted linear systems. To show this, some classical ordering algorithm such as Reverse Cuthill-McKee, Minimum Neighbouring and Multicoloring, are considered. Several numerical experiments are presented in order to show the reduction of computational cost and number of iteration of the preconditioned conjugate gradient method when some standard ordering schemes are applied. | URI: | http://hdl.handle.net/10553/48262 | ISBN: | 978-1-905088-09-6 1905088094 |
ISSN: | 1759-3433 | DOI: | 10.4203/ccp.84.88 | Source: | Proceedings of the 5th International Conference on Engineering Computational Technology |
Appears in Collections: | Actas de congresos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.