Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/48115
Campo DC Valoridioma
dc.contributor.authorMunoz, J. E.en_US
dc.contributor.authorBermudez I Badia, S.en_US
dc.contributor.authorRubio, E.en_US
dc.contributor.authorCameirao, M. S.en_US
dc.date.accessioned2018-11-23T19:03:58Z-
dc.date.available2018-11-23T19:03:58Z-
dc.date.issued2015en_US
dc.identifier.isbn9781424492718en_US
dc.identifier.issn1557-170Xen_US
dc.identifier.urihttp://hdl.handle.net/10553/48115-
dc.description.abstractThe recent rise and popularization of wearable and ubiquitous fitness sensors has increased our ability to generate large amounts of multivariate data for cardiorespiratory fitness (CRF) assessment. Consequently, there is a need to find new methods to visualize and interpret CRF data without overwhelming users. Current visualizations of CRF data are mainly tabular or in the form of stacked univariate plots. Moreover, normative data differs significantly between gender, age and activity, making data interpretation yet more challenging. Here we present a CRF assessment tool based on radar plots that provides a way to represent multivariate cardiorespiratory data from electrocardiographic (ECG) signals within its normative context. To that end, 5 parameters are extracted from raw ECG data using R-peak information: mean HR, SDNN, RMSSD, HRVI and the maximal oxygen uptake, VO2max. Our tool processes ECG data and produces a visualization of the data in a way that it is easy to compare between the performance of the user and normative data. This type of representation can assist both health professionals and non-expert users in the interpretation of CRF data.en_US
dc.languageengen_US
dc.relation.ispartofProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBSen_US
dc.sourceProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS[ISSN 1557-170X],v. 2015-November (7318381), p. 390-393en_US
dc.subject32 Ciencias médicasen_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherMultivariate Physiological Dataen_US
dc.subject.otherCardiorespiratory Fitness Assessmenten_US
dc.subject.otherECG (R-Peak) Analysisen_US
dc.titleVisualization of multivariate physiological data for cardiorespiratory fitness assessment through ECG (R-peak) analysisen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.identifier.doi10.1109/EMBC.2015.7318381en_US
dc.identifier.scopus84953294384-
dc.contributor.authorscopusid56645651500-
dc.contributor.authorscopusid6506360007-
dc.contributor.authorscopusid57038221900-
dc.contributor.authorscopusid21740694600-
dc.description.lastpage393en_US
dc.identifier.issue7318381-
dc.description.firstpage390en_US
dc.relation.volume2015-Novemberen_US
dc.investigacionCiencias de la Saluden_US
dc.type2Actas de congresosen_US
dc.description.numberofpages4en_US
dc.utils.revisionen_US
dc.date.coverdateNoviembre 2015en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-MEDen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUIBS: Tecnología Médica y Audiovisual-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.orcid0000-0003-4452-0414-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.fullNameBermúdez I Badía,Sergi-
Colección:Actas de congresos
Vista resumida

Citas SCOPUSTM   

2
actualizado el 15-dic-2024

Visitas

32
actualizado el 29-abr-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.