Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/48110
Campo DC Valoridioma
dc.contributor.authorVourvopoulos, Athanasiosen_US
dc.contributor.authorBermúdez I Badía, Sergien_US
dc.contributor.otherVourvopoulos, Athanasios-
dc.contributor.otherBermudez i Badia, Sergi-
dc.date.accessioned2018-11-23T19:01:41Z-
dc.date.available2018-11-23T19:01:41Z-
dc.date.issued2016en_US
dc.identifier.issn1743-0003en_US
dc.identifier.urihttp://hdl.handle.net/10553/48110-
dc.description.abstractBackground The use of Brain–Computer Interface (BCI) technology in neurorehabilitation provides new strategies to overcome stroke-related motor limitations. Recent studies demonstrated the brain's capacity for functional and structural plasticity through BCI. However, it is not fully clear how we can take full advantage of the neurobiological mechanisms underlying recovery and how to maximize restoration through BCI. In this study we investigate the role of multimodal virtual reality (VR) simulations and motor priming (MP) in an upper limb motor-imagery BCI task in order to maximize the engagement of sensory-motor networks in a broad range of patients who can benefit from virtual rehabilitation training. Methods In order to investigate how different BCI paradigms impact brain activation, we designed 3 experimental conditions in a within-subject design, including an immersive Multimodal Virtual Reality with Motor Priming (VRMP) condition where users had to perform motor-execution before BCI training, an immersive Multimodal VR condition, and a control condition with standard 2D feedback. Further, these were also compared to overt motor-execution. Finally, a set of questionnaires were used to gather subjective data on Workload, Kinesthetic Imagery and Presence. Results Our findings show increased capacity to modulate and enhance brain activity patterns in all extracted EEG rhythms matching more closely those present during motor-execution and also a strong relationship between electrophysiological data and subjective experience. Conclusions Our data suggest that both VR and particularly MP can enhance the activation of brain patterns present during overt motor-execution. Further, we show changes in the interhemispheric EEG balance, which might play an important role in the promotion of neural activation and neuroplastic changes in stroke patients in a motor-imagery neurofeedback paradigm. In addition, electrophysiological correlates of psychophysiological responses provide us with valuable information about the motor and affective state of the user that has the potential to be used to predict MI-BCI training outcome based on user’s profile. Finally, we propose a BCI paradigm in VR, which gives the possibility of motor priming for patients with low level of motor control.en_US
dc.languageengen_US
dc.relation.ispartofJournal of NeuroEngineering and Rehabilitationen_US
dc.sourceJournal Of Neuroengineering And Rehabilitation[ISSN 1743-0003],v. 13:69 (Agosto 2016)en_US
dc.subject32 Ciencias médicasen_US
dc.subject320404 Rehabilitación (médica)en_US
dc.subject3311 tecnología de la instrumentaciónen_US
dc.subject.otherStroke rehabilitationen_US
dc.subject.otherBrain-computer interfacesen_US
dc.subject.otherVirtual realityen_US
dc.subject.otherMotor primingen_US
dc.subject.otherMotor imageryen_US
dc.subject.otherNeurofeedbacken_US
dc.subject.otherEEGen_US
dc.titleMotor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: A within-subject analysisen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1186/s12984-016-0173-2en_US
dc.identifier.scopus2-s2.0-85007564282-
dc.identifier.isi000381337100002-
dcterms.isPartOfJournal Of Neuroengineering And Rehabilitation
dcterms.sourceJournal Of Neuroengineering And Rehabilitation[ISSN 1743-0003],v. 13
dc.contributor.authorscopusid48762198300-
dc.contributor.authorscopusid6506360007-
dc.identifier.issue69-
dc.relation.volume13en_US
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.identifier.wosWOS:000381337100002-
dc.contributor.daisngid2744923-
dc.contributor.daisngid788704-
dc.identifier.investigatorRIDF-3872-2017-
dc.identifier.investigatorRIDC-8681-2018-
dc.description.numberofpages14en_US
dc.utils.revisionen_US
dc.date.coverdateAgosto 2016en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-MEDen_US
dc.description.sjr1,169
dc.description.jcr3,516
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IUIBS: Tecnología Médica y Audiovisual-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.orcid0000-0003-4452-0414-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.fullNameBermúdez I Badía,Sergi-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

81
actualizado el 14-abr-2024

Citas de WEB OF SCIENCETM
Citations

71
actualizado el 25-feb-2024

Visitas

24
actualizado el 28-may-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.