Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/48039
Campo DC Valoridioma
dc.contributor.authorde Jong, Jeroen T.M.en_US
dc.contributor.authorBoyé, Marieen_US
dc.contributor.authorGelado-Caballero, Maria D.en_US
dc.contributor.authorTimmermans, Klaas R.en_US
dc.contributor.authorVeldhuis, Marcel J.W.en_US
dc.contributor.authorNolting, Rob F.en_US
dc.contributor.authorvan den Berg, Constant M.G.en_US
dc.contributor.authorde Baar, Hein J.W.en_US
dc.contributor.othervan den Berg, Constant-
dc.contributor.otherde Jong, Jeroen-
dc.contributor.otherGELADO CABALLERO, MARIA DOLORES-
dc.contributor.otherGelado-Caballero, M.D.-
dc.date.accessioned2018-11-23T18:28:50Z-
dc.date.available2018-11-23T18:28:50Z-
dc.date.issued2007en_US
dc.identifier.issn0304-4203en_US
dc.identifier.urihttp://hdl.handle.net/10553/48039-
dc.description.abstractDissolved Fe, Mn and Al concentrations (dFe, dMn and dAl hereafter) in surface waters and the water column of the Northeast Atlantic and the European continental shelf are reported. Following an episode of enhanced Saharan dust inputs over the Northeast Atlantic Ocean prior and during the cruise in March 1998, surface concentrations were enhanced up to 4 nmol L− 1 dFe, 3 nmol L− 1 dMn and 40 nmol L− 1 dAl and returned to 0.6 nmol L− 1 dFe, 0.5 nmol L− 1 dMn and 10 nmol L− 1 dAl towards the end of the cruise three weeks later. A simple steady state model (MADCOW, [Measures, C.I., Brown, E.T., 1996. Estimating dust input to the Atlantic Ocean using surface water aluminium concentrations. In: Guerzoni. S. and Chester. R. (Eds.), The impact of desert dust across the Mediterranean, Kluwer Academic Publishers, The Netherlands, pp. 301–311.]) was used which relies on surface ocean dAl as a proxy for atmospheric deposition of mineral dust. We estimated dust input at 1.8 g m− 2 yr− 1 (range 1.0–2.9 g m− 2 yr− 1) and fluxes of dFe, dMn and dAl were inferred. Mixed layer steady state residence times for dissolved metals were estimated at 1.3 yr for dFe (range 0.3–2.9 yr) and 1.9 yr for dMn (range 1.0–3.8 yr). The dFe residence time may have been overestimated and it is shown that 0.2–0.4 yr is probably more realistic. Using vertical dFe versus Apparent Oxygen Utilization (AOU) relationships as well as a biogeochemical two end member mixing model, regenerative Fe:C ratios were estimated respectively to be 20 ± 6 and 22 ± 5 μmol Fe:mol C. Combining the atmospheric flux of dFe to the upper water column with the latter Fe:C ratio, a ‘new iron’ supported primary productivity of only 15% (range 7%–56%) was deduced. This would imply that 85% (range 44–93%) of primary productivity could be supported by regenerated dFe. The open ocean surface data suggest that the continental shelf is probably not a major source of dissolved metals to the surface of the adjacent open ocean. Continental shelf concentrations of dMn, dFe, and to a lesser extent dAl, were well correlated with salinity and express mixing of a fresher continental end member with Atlantic Ocean water flowing onto the shelf. This means probably that diffusive benthic fluxes did not play a major role at the time of the cruise.en_US
dc.languageengen_US
dc.publisher0304-4203-
dc.relation.ispartofMarine Chemistryen_US
dc.sourceMarine Chemistry [ISSN 0304-4203], v. 107, p. 120-142en_US
dc.subject251002 Oceanografía químicaen_US
dc.subject.otherSea wateren_US
dc.subject.otherTrace metalsen_US
dc.subject.otherEolian dusten_US
dc.subject.otherOceansen_US
dc.subject.otherContinental shelvesen_US
dc.subject.otherAtlanticen_US
dc.titleInputs of iron, manganese and aluminium to surface waters of the Northeast Atlantic Ocean and the European continental shelfen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1016/j.marchem.2007.05.007
dc.identifier.scopus35148898252-
dc.identifier.isi000250904600002-
dcterms.isPartOfMarine Chemistry-
dcterms.sourceMarine Chemistry[ISSN 0304-4203],v. 107 (2), p. 120-142-
dc.contributor.authorscopusid7201967920-
dc.contributor.authorscopusid7004617111-
dc.contributor.authorscopusid6506058559-
dc.contributor.authorscopusid6701849615-
dc.contributor.authorscopusid23969768400-
dc.contributor.authorscopusid7004483647-
dc.contributor.authorscopusid7101982433-
dc.contributor.authorscopusid35403534800-
dc.description.lastpage142-
dc.description.firstpage120-
dc.relation.volume107-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid822159-
dc.contributor.daisngid1302826-
dc.contributor.daisngid2134468-
dc.contributor.daisngid539966-
dc.contributor.daisngid417235-
dc.contributor.daisngid1102768-
dc.contributor.daisngid170218-
dc.contributor.daisngid163978-
dc.identifier.investigatorRIDA-7065-2012-
dc.identifier.investigatorRIDF-3190-2011-
dc.identifier.investigatorRIDH-5696-2015-
dc.identifier.investigatorRIDNo ID-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:de Jong, JTM
dc.contributor.wosstandardWOS:Boye, M
dc.contributor.wosstandardWOS:Gelado-Caballero, MD
dc.contributor.wosstandardWOS:Timmermans, KR
dc.contributor.wosstandardWOS:VeldhuiS, MJW
dc.contributor.wosstandardWOS:Nolting, RF
dc.contributor.wosstandardWOS:van den Berg, CMG
dc.contributor.wosstandardWOS:de Baar, HJW
dc.date.coverdateOctubre 2007
dc.identifier.ulpgces
dc.description.jcr3,085
dc.description.jcrqQ1
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR Tecnologías, Gestión y Biogeoquímica Ambiental-
crisitem.author.deptDepartamento de Química-
crisitem.author.orcid0000-0003-4001-9673-
crisitem.author.parentorgDepartamento de Química-
crisitem.author.fullNameGelado Caballero, María Dolores-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

44
actualizado el 24-mar-2024

Citas de WEB OF SCIENCETM
Citations

39
actualizado el 25-feb-2024

Visitas

71
actualizado el 27-may-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.