Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/48004
Campo DC Valoridioma
dc.contributor.authorFernández Rodríguez, Fernandoen_US
dc.contributor.authorAndrada Félix, Juliánen_US
dc.contributor.authorAcosta González, Eduardoen_US
dc.date.accessioned2018-11-23T18:12:02Z-
dc.date.available2018-11-23T18:12:02Z-
dc.date.issued2010en_US
dc.identifier.isbn9781607412892-
dc.identifier.urihttp://hdl.handle.net/10553/48004-
dc.description.abstractIn order to avoid the predictive mismatching that exists between different technical trading rules for predicting stock process, new rules capable of using all the information offered for a wide variety of rules are provided. The system for combining the different types of predictions given by trading rules is based on statistical learning methods (Boosting, and several model averaging methods like Bayesian, or simple averaging methods). When applied to simple and exponential moving average rules designed for predicting the Spanish IBEX35 stock index from January 1998 to December 2007, statistical learning methods supply better out-ofsample results than most of the single moving average rules. In general, the trading strategies based on filtered statistical learning methods are considerably superior to B&H strategy and the behaviour of the filtered statistical learning models reveal a better performance in terms of economic fitness measures during the movements of IBEX35 in clear up-trends and down-trends.en_US
dc.languagespaen_US
dc.relation.ispartofData Mining and Managementen_US
dc.sourceData Mining and Management, p. 141-158en_US
dc.subject5302 Econometríaen_US
dc.subject.otherBolsa de valoresen_US
dc.subject.otherModelos económetricosen_US
dc.titleStatistical learning methods for combining technical trading rules and predicting the stock marketsen_US
dc.typeinfo:eu-repo/semantics/bookParten_US
dc.typeBooken_US
dc.identifier.scopus84892112705-
dc.contributor.authorscopusid6603053452-
dc.contributor.authorscopusid6505916889-
dc.contributor.authorscopusid55996470700-
dc.description.lastpage158-
dc.description.firstpage141-
dc.investigacionCiencias Sociales y Jurídicasen_US
dc.type2Capítulo de libroen_US
dc.utils.revisionen_US
dc.date.coverdateDiciembre 2010
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR Finanzas Cuantitativas y Computacionales-
crisitem.author.deptGIR Finanzas Cuantitativas y Computacionales-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.deptGIR Finanzas Cuantitativas y Computacionales-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.orcid0000-0002-8808-9286-
crisitem.author.orcid0000-0001-8598-3234-
crisitem.author.orcid0000-0002-9547-8546-
crisitem.author.parentorgDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.parentorgDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.parentorgDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.fullNameFernández Rodríguez,Fernando Emilio-
crisitem.author.fullNameAndrada Félix, Julián-
crisitem.author.fullNameAcosta González, Eduardo-
Colección:Capítulo de libro
Vista resumida

Visitas

91
actualizado el 12-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.