Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/47800
DC FieldValueLanguage
dc.contributor.authorAbderramán, Jesús C.en_US
dc.contributor.authorCuesta, Pedro D.en_US
dc.contributor.authorSánchez, Carlos A.en_US
dc.contributor.authorJiménez, José A.en_US
dc.date.accessioned2018-11-23T16:31:23Z-
dc.date.available2018-11-23T16:31:23Z-
dc.date.issued2000en_US
dc.identifier.isbn978-84-89925-70-0en_US
dc.identifier.isbn84-89925-70-4-
dc.identifier.urihttp://hdl.handle.net/10553/47800-
dc.description.abstractIn this paper it is attempted to improve the Genetic-Statistic Algorithm by studying the relations between several search parameters (mutation "μ", chromosomés length "L", population " n " and number of genertions by iteration "t"). It has been made a study over twenty-four objective functions in eight different dimensions. When the convergence is reached, it is made a correlation and regression analysis between the parameters corresponding to this state. The possible relations among search parameters can simplify the hand tuning of the algorithm when we are searching the optimum in any problem. The twentyfour tested functions are not common test problems and were originated by a random problem generator. The use of this generator tries to complete the gaps that a test on typical test functions could leave. The most meaningful result of the correlation analysis is that there is not correlation between the degree of mutation and the others search parameters. Mutation in AGE seems to depend solely on the characteristics of the objective function. It exists a notable correlation between the size of the population and the number of generations by iteration. This result would be used to reduce the launching time of AGE in problems where it will not be necessary a high precision in the approximation of the global optimum, or when AGE is used in a first approximation stage, for thereinafter, in a second stage, to use a local optimization algorithm. Correlations among the other parameters do not seem sufficiently meaningful to be considered.en_US
dc.languageengen_US
dc.sourceEuropean Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2000en_US
dc.subject12 Matemáticasen_US
dc.subject.otherCorrelation and regressionen_US
dc.subject.otherDomain's reductionen_US
dc.subject.otherEvolutionary algorithmsen_US
dc.subject.otherGenetic-statistic algorithmen_US
dc.subject.otherGlobal optimizationen_US
dc.titleConvergent parameters value for genetic-statistic algorithm (AGE)en_US
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.typeConferenceObjectes
dc.relation.conferenceEuropean Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2000
dc.identifier.scopus84893379181-
dc.contributor.authorscopusid36657478100-
dc.contributor.authorscopusid57194139601-
dc.contributor.authorscopusid56024584000-
dc.contributor.authorscopusid57008390600-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.date.coverdateDiciembre 2000
dc.identifier.conferenceidevents121501
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.fullNameCuesta Moreno, Pedro Damián-
crisitem.event.eventsstartdate11-09-2000-
crisitem.event.eventsenddate14-09-2000-
Appears in Collections:Actas de congresos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.