Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/47784
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Cabrera-León, Ylermi | en_US |
dc.contributor.author | García Báez, Patricio | en_US |
dc.contributor.author | Suárez-Araujo, Carmen Paz | en_US |
dc.date.accessioned | 2018-11-23T16:23:00Z | - |
dc.date.available | 2018-11-23T16:23:00Z | - |
dc.date.issued | 2016 | en_US |
dc.identifier.isbn | 978-989-758-201-1 | en_US |
dc.identifier.other | WoS | - |
dc.identifier.uri | http://hdl.handle.net/10553/47784 | - |
dc.description.abstract | Spam, or unsolicited messages sent massively, is one of the threats that affects email and other media. Its high volume generates substantial time and economic losses. A solution to this problem is presented: a hybrid anti-spam filter based on unsupervised Artificial Neural Networks (ANNs). It consists of two steps, preprocessing and processing, both based on different computation models: programmed and neural (using Kohonen SOM). This system has been optimized using, as a data corpus, ham from "Enron Email" and spam from two different sources: traditional (user's inbox) and spamtrap-honeypot. It has been proved that thematic categories can be found both in spam and ham words. 1260 system configurations were analyzed, comparing their quality and performance with the most used metrics. All of them achieved AUC > 0.90 and the best 204 AUC > 0.95, despite just using 13 attributes for the input vectors of the SOM, one for each thematic category. Results were similar to other researchers' over the same corpus, though they make use of different Machine Learning (ML) methods and a number of attributes several orders of magnitude greater. It was further tested with datasets not utilized during design, obtaining 0.77 < AUC < 0.96 with normalized data. | en_US |
dc.language | eng | en_US |
dc.source | IJCCI 2016 - Proceedings of the 8th International Joint Conference on Computational Intelligence, v. 3, p. 21-32 | en_US |
dc.subject | 120304 Inteligencia artificial | en_US |
dc.subject.other | Anti-spam | en_US |
dc.subject.other | Artificial neural networks | en_US |
dc.subject.other | Ham | en_US |
dc.subject.other | Inverse category or class frequency | en_US |
dc.subject.other | Self-organizing maps (SOMs) | en_US |
dc.subject.other | Spam | en_US |
dc.subject.other | Term frequency | en_US |
dc.subject.other | Thematic category | en_US |
dc.title | Self-organizing maps in the design of anti-spam filters a proposal based on thematic categories | en_US |
dc.type | info:eu-repo/semantics/conferenceObject | en_US |
dc.type | ConferenceObject | en_US |
dc.relation.conference | 8th International Joint Conference on Computational Intelligence, IJCCI 2016 | en_US |
dc.identifier.doi | 10.5220/0006041400210032 | en_US |
dc.identifier.scopus | 85006445776 | - |
dc.identifier.isi | 000393153700001 | - |
dc.contributor.authorscopusid | 57192423564 | - |
dc.contributor.authorscopusid | 23476362100 | - |
dc.contributor.authorscopusid | 6603605708 | - |
dc.description.lastpage | 32 | en_US |
dc.description.firstpage | 21 | en_US |
dc.relation.volume | 3 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Actas de congresos | en_US |
dc.contributor.daisngid | 33311301 | - |
dc.contributor.daisngid | 32254292 | - |
dc.contributor.daisngid | 9879072 | - |
dc.description.numberofpages | 12 | en_US |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Cabrera-Leon, Y | - |
dc.contributor.wosstandard | WOS:Baez, PG | - |
dc.contributor.wosstandard | WOS:Suarez-Araujo, CP | - |
dc.date.coverdate | Enero 2016 | en_US |
dc.identifier.conferenceid | events121027 | - |
dc.identifier.ulpgc | Sí | es |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.event.eventsstartdate | 09-11-2016 | - |
crisitem.event.eventsenddate | 11-11-2016 | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0001-5709-2274 | - |
crisitem.author.orcid | 0000-0002-9973-5319 | - |
crisitem.author.orcid | 0000-0002-8826-0899 | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.fullName | Cabrera León, Ylermi | - |
crisitem.author.fullName | García Baez, Patricio | - |
crisitem.author.fullName | Suárez Araujo, Carmen Paz | - |
Colección: | Actas de congresos |
Citas SCOPUSTM
7
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
3
actualizado el 17-nov-2024
Visitas
176
actualizado el 10-ago-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.