Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/47674
Título: | An application of the Morgenstern family with standard two-sided power and gamma marginal distributions to the Bayes premium in the collective risk model | Autores/as: | Hernández, A. Pilar Fernández, M. Martel Escobar, María Carmen Vázquez-Polo, Francisco J. |
Clasificación UNESCO: | 530204 Estadística económica | Palabras clave: | Estadística bayesiana | Fecha de publicación: | 2013 | Editor/a: | 1524-1904 | Publicación seriada: | Applied Stochastic Models in Business and Industry | Resumen: | The Bayes premium is a quantity of interest in the actuarial collective risk model, under which certain hypotheses are assumed. The usual assumption of independence among risk profiles is very convenient from a computational point of view but is not always realistic. Recently, several authors in the field of actuarial and operational risks have examined the incorporation of some dependence in their models. In this paper, we approach this topic by using and developing a Farlie-Gumbel-Morgenstern (FGM) family of prior distributions with specified marginals given by standard two-sided power and gamma distributions. An alternative Poisson-Lindley distribution is also used to model the count data as the number of claims. For the model considered, closed expressions of the main quantities of interest are obtained, which permit us to investigate the behavior of the Bayes premium under the dependence structure adopted (Farlie-Gumbel-Morgenstern) when the independence case is included. | URI: | http://hdl.handle.net/10553/47674 | ISSN: | 1524-1904 | DOI: | 10.1002/asmb.1930 | Fuente: | Applied Stochastic Models in Business and Industry[ISSN 1524-1904],v. 29, p. 468-478 |
Colección: | Artículos |
Visitas
115
actualizado el 24-ago-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.