Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/47661
Campo DC Valoridioma
dc.contributor.authorCabello, D.en_US
dc.contributor.authorDelgado, A.en_US
dc.contributor.authorCarreira, M. J.en_US
dc.contributor.authorMira, J.en_US
dc.contributor.authorMoreno-Díaz, R.en_US
dc.contributor.authorMuñoz, J. A.en_US
dc.contributor.authorCandela, S.en_US
dc.date.accessioned2018-11-23T15:21:59Z-
dc.date.available2018-11-23T15:21:59Z-
dc.date.issued1990en_US
dc.identifier.issn0196-9722en_US
dc.identifier.urihttp://hdl.handle.net/10553/47661-
dc.description.abstractIn this paper we present the initial outline of a knowledge-based system for the automatic interpretation of chest x-ray images. The processing is carried out in two levels. The operations on the image that are independent of the knowledge domain and therefore specific to the image in a syntactic level are carried out in the first level. In the second level, a semantic analysis of the image, based on the results of the first level, is performed. The knowledge of the domain is injected in the high-level process; it is described by a semantic network that permits an explicit representation of both the intrinsic anatomic properties of the organs and pathologic structures and the relational aspects. The analysis strategies represent.en_US
dc.languageengen_US
dc.relation.ispartofCybernetics and Systemsen_US
dc.sourceCybernetics and Systems [ISSN 0196-9722], v. 21 (2-3), p. 277-289en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject220990 Tratamiento digital. Imágenesen_US
dc.subject32 Ciencias médicasen_US
dc.titleOn knowledge-based medical image understandingen_US
dc.typeinfo:eu-repo/semantics/articlees
dc.typeArticlees
dc.identifier.doi10.1080/01969729008902241en_US
dc.identifier.scopus0025399218-
dc.contributor.authorscopusid7004093403-
dc.contributor.authorscopusid7201675914-
dc.contributor.authorscopusid15061137300-
dc.contributor.authorscopusid7102609941-
dc.contributor.authorscopusid24543463600-
dc.contributor.authorscopusid56988504100-
dc.contributor.authorscopusid36934476600-
dc.identifier.eissn1087-6553-
dc.description.lastpage289-
dc.identifier.issue2-3-
dc.description.firstpage277-
dc.relation.volume21-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.identifier.ulpgces
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-5314-6033-
crisitem.author.orcid0009-0008-9619-7341-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameMoreno Díaz, Roberto-
crisitem.author.fullNameMuñoz Blanco, José Antonio-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

1
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 17-nov-2024

Visitas

106
actualizado el 24-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.