Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/47459
Título: | An Efficient Algorithm for Multiple Sclerosis Lesion Segmentation from Brain MRI | Autores/as: | Cardenes, R. Warfield, S. K. Macias, EM Santana, J. A. Ruiz-Alzola, J. |
Clasificación UNESCO: | 3314 Tecnología médica | Palabras clave: | Finding Nearest Neighbors Arbitrary Dimensions Classification |
Fecha de publicación: | 2003 | Editor/a: | 0302-9743 | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 9th International Workshop on Computer Aided Systems Theory | Resumen: | We propose a novel method for the segmentation of Multiple Sclerosis (MS) lesions in MRI. The method is based on a three-step approach: first a conventional k-NN classifier is applied to pre-classify gray matter (CM), white matter (WM), cerebro-spinal fluid (CSF) and MS lesions from a set of prototypes selected by an expert. Second, the classification of problematic patterns is resolved computing a fast distance transformation (DT) algorithm from the set of prototypes in the Euclidean space defined by the MRI dataset. Finally, a connected component filtering algorithm is used to remove lesion voxels not connected to the real lesions. This method uses distance information together with intensity information to improve the accuracy of lesion segmentation and, thus, it is specially useful when MS lesions have similar intensity values than other tissues. It is also well suited for interactive segmentations due to its efficiency. Results are shown on real MRI data as wall as on a standard database of synthetic images. | URI: | http://hdl.handle.net/10553/47459 | ISBN: | 3-540-20221-8 | ISSN: | 0302-9743 | Fuente: | LECTURE NOTES IN COMPUTER SCIENCE[ISSN 0302-9743], p. 542-551 |
Colección: | Artículos |
Citas SCOPUSTM
11
actualizado el 08-dic-2024
Citas de WEB OF SCIENCETM
Citations
7
actualizado el 25-feb-2024
Visitas
97
actualizado el 01-nov-2024
Descargas
78
actualizado el 01-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.