Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/47459
Título: An Efficient Algorithm for Multiple Sclerosis Lesion Segmentation from Brain MRI
Autores/as: Cardenes, R.
Warfield, S. K.
Macias, EM 
Santana, J. A. 
Ruiz-Alzola, J. 
Clasificación UNESCO: 3314 Tecnología médica
Palabras clave: Finding Nearest Neighbors
Arbitrary Dimensions
Classification
Fecha de publicación: 2003
Editor/a: 0302-9743
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 9th International Workshop on Computer Aided Systems Theory 
Resumen: We propose a novel method for the segmentation of Multiple Sclerosis (MS) lesions in MRI. The method is based on a three-step approach: first a conventional k-NN classifier is applied to pre-classify gray matter (CM), white matter (WM), cerebro-spinal fluid (CSF) and MS lesions from a set of prototypes selected by an expert. Second, the classification of problematic patterns is resolved computing a fast distance transformation (DT) algorithm from the set of prototypes in the Euclidean space defined by the MRI dataset. Finally, a connected component filtering algorithm is used to remove lesion voxels not connected to the real lesions. This method uses distance information together with intensity information to improve the accuracy of lesion segmentation and, thus, it is specially useful when MS lesions have similar intensity values than other tissues. It is also well suited for interactive segmentations due to its efficiency. Results are shown on real MRI data as wall as on a standard database of synthetic images.
URI: http://hdl.handle.net/10553/47459
ISBN: 3-540-20221-8
ISSN: 0302-9743
Fuente: LECTURE NOTES IN COMPUTER SCIENCE[ISSN 0302-9743], p. 542-551
Colección:Artículos
miniatura
Adobe PDF (408,72 kB)
Vista completa

Citas SCOPUSTM   

11
actualizado el 08-dic-2024

Citas de WEB OF SCIENCETM
Citations

7
actualizado el 25-feb-2024

Visitas

97
actualizado el 01-nov-2024

Descargas

78
actualizado el 01-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.