Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/47297
Campo DC Valoridioma
dc.contributor.authorToraño, J.en_US
dc.contributor.authorRodríguez, R.en_US
dc.contributor.authorDiego, I.en_US
dc.date.accessioned2018-11-23T12:25:15Z-
dc.date.available2018-11-23T12:25:15Z-
dc.date.issued2006en_US
dc.identifier.isbn1845641639en_US
dc.identifier.issn1743-3533en_US
dc.identifier.urihttp://hdl.handle.net/10553/47297-
dc.description.abstractIn the framework of the Research Project CTM2005-00187/TECNO, “Prediction models and prevention systems in the particle atmospheric contamination in an industrial environment” of the Spanish National R+D Plan of the Ministry of Education and Science, 2004-2007 period, a CFD model has been developed to simulate air flows in tunnels and galleries, including its detailed comparison with available experimental data. Taking into account the importance of the air velocity distribution in the tunnels or galleries where there is continuous transport of particulated material by means of conveyor belts, and where PM10 or PM50 particulated material can be easily thrown in suspension, we quickly identify the necessity of studying the air behaviour using CFD software. Several models were developed using the commercial code Ansys CFX 10.0, starting from several 3D meshes of different resolutions generated using ICEM CFD 10.0. Medium complexity turbulence models were selected in order to obtain acceptable resolution times in single processor machines, as well as following advices contained in related bibliography. Zero Equation (constant turbulent eddy viscosity), k-epsilon and Spallart-Allmaras models were used, comparing their results with detailed experimental measurements obtained from the use of hot wire anemometers. Results show good agreement between the simulated data and the experimental measurements depending on the turbulence model: areas close to the tunnel end are best simulated using k-e, but areas far from the tunnel end, in the developed flow area, are best simulated using Spalart-Allmaras. As was expected the constant turbulent eddy viscosity model gave results which were not very approximated.en_US
dc.languageengen_US
dc.publisher1743-3533en_US
dc.relation.ispartofWIT Transactions on Engineering Sciencesen_US
dc.sourceWIT Transactions on Engineering Sciences[ISSN 1743-3533],v. 52, p. 113-121en_US
dc.subject3305 Tecnología de la construcciónen_US
dc.subject.otherDeath end ventilationen_US
dc.subject.otherParticulated materialen_US
dc.subject.otherCFDen_US
dc.subject.otherTurbulenceen_US
dc.titleComputational Fluid Dynamics (CFD) use in the simulation of the death end ventilation in tunnels and galleriesen_US
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.typeConferenceObjectes
dc.identifier.doi10.2495/AFM06012en_US
dc.identifier.scopus36148992301-
dc.contributor.authorscopusid6603467221-
dc.contributor.authorscopusid56314921800-
dc.contributor.authorscopusid14013452500-
dc.description.lastpage121-
dc.description.firstpage113-
dc.relation.volume52-
dc.investigacionCienciasen_US
dc.type2Actas de congresosen_US
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUNAT: Interacción Radiación-Materia-
crisitem.author.deptIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.deptDepartamento de Física-
crisitem.author.orcid0000-0002-8326-3169-
crisitem.author.parentorgIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.fullNameRodríguez Pérez, Rafael-
Colección:Actas de congresos
Vista resumida

Citas SCOPUSTM   

13
actualizado el 01-dic-2024

Citas de WEB OF SCIENCETM
Citations

5
actualizado el 24-nov-2024

Visitas

107
actualizado el 12-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.