Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/46949
Campo DC Valoridioma
dc.contributor.authorDas, Abhijiten_US
dc.contributor.authorPal, Umapadaen_US
dc.contributor.authorBallester, Miguel Angel Ferreren_US
dc.contributor.authorBlumenstein, Michaelen_US
dc.date.accessioned2018-11-23T09:39:07Z-
dc.date.available2018-11-23T09:39:07Z-
dc.date.issued2015en_US
dc.identifier.isbn9781479945344en_US
dc.identifier.issn2325-4300en_US
dc.identifier.urihttp://hdl.handle.net/10553/46949-
dc.description.abstractIn this piece of work a wrist vein pattern recognition and verification system is proposed. Here the wrist vein images from the PUT database were used, which were acquired in visible spectrum. The vein image only highlights the vein pattern area so, segmentation was not required. Since the wrist's veins are not prominent, image enhancement was performed. An Adaptive Histogram Equalization and Discrete Meyer Wavelet were used to enhance the vessel patterns. For feature extraction, the vein pattern is characterized with Dense Local Binary Pattern (D-LBP). D-LBP patch descriptors of each training image are used to form a bag of features, which was used to produce the training model. Support Vector Machines (SVMs) were used for classification. An encouraging Equal Error Rate (EER) of 0.79% was achieved in our experiments.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Workshop on Computational Intelligence in Biometrics and Identity Management, CIBIMen_US
dc.sourceIEEE Workshop on Computational Intelligence in Biometrics and Identity Management, CIBIM[ISSN 2325-4300],v. 2015-January (7015445), p. 68-75en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherVeinsen_US
dc.subject.otherWristen_US
dc.subject.otherFeature extractionen_US
dc.subject.otherAdaptive equalizersen_US
dc.subject.otherSupport vector machinesen_US
dc.titleA new wrist vein biometric systemen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference2014 IEEE Symposium Series on Computational Intelligence, IEEE SSCI 2014 - 2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management, CIBIM 2014en_US
dc.identifier.doi10.1109/CIBIM.2014.7015445en_US
dc.identifier.scopus84937886848-
dc.contributor.authorscopusid57214490551-
dc.contributor.authorscopusid7403596707-
dc.contributor.authorscopusid57200742116-
dc.contributor.authorscopusid56126176900-
dc.contributor.authorscopusid56243577200-
dc.description.lastpage75en_US
dc.identifier.issue7015445-
dc.description.firstpage68en_US
dc.relation.volume2015-Januaryen_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2015en_US
dc.identifier.conferenceidevents121550-
dc.identifier.ulpgces
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
crisitem.event.eventsstartdate14-05-2001-
crisitem.event.eventsenddate18-05-2001-
Colección:Actas de congresos
miniatura
Adobe PDF (586,28 kB)
Vista resumida

Citas SCOPUSTM   

27
actualizado el 15-dic-2024

Visitas

72
actualizado el 18-may-2024

Descargas

172
actualizado el 18-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.