Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/46832
DC FieldValueLanguage
dc.contributor.authorMedina, A.en_US
dc.contributor.authorMarcello, J.en_US
dc.contributor.authorEugenio González, Franciscoen_US
dc.contributor.authorRodríguez Esparragón, Dionisioen_US
dc.contributor.authorMartín, J.en_US
dc.date.accessioned2018-11-23T08:44:12Z-
dc.date.available2018-11-23T08:44:12Z-
dc.date.issued2012en_US
dc.identifier.isbn9780819492777en_US
dc.identifier.issn0277-786Xen_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/46832-
dc.description.abstractImage fusion is the process of combining information from two or more images into a single composite image that is more informative for visual perception or additional processing. Pan-sharpening algorithms work either in the spatial or in the transform domain and the most popular and effective methods include arithmetic combinations (Brovey transform), the intensity-hue-saturation transform (IHS), principal component analysis (PCA) and different multiresolution analysis-based methods, typically wavelet transforms. In recent years, a number of image fusion quality assessment metrics have been proposed. Automatic quality assessment is necessary to evaluate the possible benefits of fusion, to determine an optimal setting of parameters, as well as to compare results obtained with different algorithms to check the improvement of spatial resolution while preserving the spectral content of the data. This work addresses the challenging topic of the quality evaluation of pan-sharpening methods. In particular, a database with a synthetic image and real GeoEye satellite data was created and several pan-sharpening methods were implemented and tested. Some interesting results about the color and the spatial distortions of each method were presented and it was demonstrated that some colors bands are more affected than others depending on the fusion techniques. After the evaluation of these fusion algorithms, we can conclude that, in general, the à trous wavelet-based methods achieve the best spectral performance while the IHS-based techniques attain the best spatial accuracy.-
dc.languageengen_US
dc.relation.ispartofProceedings of SPIE - The International Society for Optical Engineeringen_US
dc.sourceProceedings of SPIE - The International Society for Optical Engineering[ISSN 0277-786X],v. 8537 (853703)en_US
dc.subject3307 Tecnología electrónica-
dc.subject.otherPan-sharpening algorithms-
dc.subject.otherImage fusion-
dc.subject.otherSpatial resolution-
dc.subject.otherPixel-Level Fusion-
dc.subject.otherVery High Resolution-
dc.subject.otherQuality Indicators-
dc.subject.otherErgas-
dc.subject.otherWavelet Transform-
dc.subject.otherIhs-
dc.titleColor and spatial distortions of pan-sharpening methods in real and synthetic imagesen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceImage and Signal Processing for Remote Sensing XVIIIen_US
dc.identifier.doi10.1117/12.974566en_US
dc.identifier.scopus84875665961-
dc.identifier.isi000316683600001-
dc.contributor.authorscopusid55334778300-
dc.contributor.authorscopusid6602158797-
dc.contributor.authorscopusid6603605357-
dc.contributor.authorscopusid8206317800-
dc.contributor.authorscopusid56016220800-
dc.identifier.issue853703-
dc.relation.volume8537en_US
dc.investigacionIngeniería y Arquitectura-
dc.type2Actas de congresosen_US
dc.contributor.daisngid5194317-
dc.contributor.daisngid702897-
dc.contributor.daisngid5242233-
dc.contributor.daisngid9898523-
dc.contributor.daisngid17006467-
dc.description.numberofpages9en_US
dc.utils.revision-
dc.contributor.wosstandardWOS:Medina, A-
dc.contributor.wosstandardWOS:Marcello, J-
dc.contributor.wosstandardWOS:Eugenio, F-
dc.contributor.wosstandardWOS:Rodriguez, D-
dc.contributor.wosstandardWOS:Martin, J-
dc.date.coverdateDiciembre 2012en_US
dc.identifier.conferenceidevents120812-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-TELen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate24-09-2012-
crisitem.event.eventsenddate26-09-2012-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-9646-1017-
crisitem.author.orcid0000-0002-0010-4024-
crisitem.author.orcid0000-0002-4542-2501-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameMarcello Ruiz, Francisco Javier-
crisitem.author.fullNameEugenio González, Francisco-
crisitem.author.fullNameRodríguez Esparragón, Dionisio-
Appears in Collections:Actas de congresos
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 17, 2024

Page view(s)

133
checked on Aug 24, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.