Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/46786
Campo DC Valoridioma
dc.contributor.authorSánchez-Nielsen, Elenaen_US
dc.contributor.authorHernández Tejera, Marioen_US
dc.date.accessioned2018-11-23T08:10:16Z-
dc.date.available2018-11-23T08:10:16Z-
dc.date.issued2005en_US
dc.identifier.isbn978-3-540-29282-1en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/10553/46786-
dc.description.abstractTracking of objects is a basic process in computer vision. This process can be formulated as exploration problems and thus can be expressed as a search into a states space based representation approach. However, these problems are hard of solving because they involve search through a high dimensional space corresponding to the possible motion and deformation of the object. In this paper, we propose a heuristic algorithm that combines three features in order to compute motion efficiently: (1) a quality of function match, (2) Kullback-Leibler measure as heuristic to guide the search process and (3) incorporation of target dynamics for computing promising search alternatives. Once target 2D motion has been calculated, the result value of the quality of function match computed is used in other heuristic algorithm with the purpose of verifying template updates. Also, a short-term memory subsystem is included with the purpose of recovering previous views of the target object. The paper includes experimental evaluations with video streams that illustrate the efficiency for real-time vision based-tasks.en_US
dc.languageengen_US
dc.relationTecnicas Para El Robustecimiento de Procesos en Vision Artificial Para la Interaccionen_US
dc.relation.ispartofLecture Notes in Computer Scienceen_US
dc.sourceDe Gregorio M., Di Maio V., Frucci M., Musio C. (eds) Brain, Vision, and Artificial Intelligence. BVAI 2005. Lecture Notes in Computer Science, vol 3704. Springer, Berlin, Heidelbergen_US
dc.subject1203 Ciencia de los ordenadoresen_US
dc.titleHeuristic algorithms for fast and accurate tracking of moving objects in unrestricted environmentsen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.relation.conference1st International Symposium on Brain, Vision, and Artificial Intelligence
dc.identifier.doi10.1007/11565123_49en_US
dc.identifier.scopus33646175177-
dc.identifier.isi000233332300049-
dc.contributor.authorscopusid13105159100-
dc.contributor.authorscopusid55966875800-
dc.identifier.eissn1611-3349-
dc.description.lastpage516-
dc.description.firstpage507-
dc.relation.volume3704-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid1518383
dc.contributor.daisngid2188888
dc.identifier.eisbn978-3-540-32029-6-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Sanchez-Nielsen, E
dc.contributor.wosstandardWOS:Hernandez-Tejera, M
dc.date.coverdate2005
dc.identifier.conferenceidevents120473
dc.identifier.ulpgces
dc.description.jcr0,402
dc.description.jcrqQ4
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.project.principalinvestigatorLorenzo Navarro, José Javier-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0001-9717-8048-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameHernández Tejera, Francisco Mario-
crisitem.event.eventsstartdate19-10-2005-
crisitem.event.eventsenddate21-10-2005-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

4
actualizado el 03-nov-2024

Citas de WEB OF SCIENCETM
Citations

3
actualizado el 25-feb-2024

Visitas

116
actualizado el 20-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.