Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/46785
DC FieldValueLanguage
dc.contributor.authorSánchez-Nielsen, Elenaen_US
dc.contributor.authorHernández Tejera, Marioen_US
dc.date.accessioned2018-11-23T08:09:39Z-
dc.date.available2018-11-23T08:09:39Z-
dc.date.issued2005en_US
dc.identifier.isbn978-3-540-32046-3en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/10553/46785-
dc.description.abstractMany vision problems require computing fast template motion in dynamic scenes. These problems can be formulated as exploration problems and thus can be expressed as a search into a state space based representation approach. However, these problems are hard to solve because they involve search through a high dimensional space. In this paper, we propose a heuristic algorithm through the space of transformations for computing target 2D motion. Three features are combined in order to compute efficient motion: (1) a quality of function match based on a holistic similarity measurement, (2) Kullback-Leibler measure as heuristic to guide the search process and (3) incorporation of target dynamics into the search process for computing the most promising search alternatives. The paper includes experimental evaluations that illustrate the efficiency and suitability for real-time vision based tasks.en_US
dc.languageengen_US
dc.relationTécnicas Para El Robustecimiento de Procesos en Visión Artificial Para la Interacción [Spanish Government under the Project TIN2004-07087]en_US
dc.relation.ispartofLecture Notes in Computer Scienceen_US
dc.sourceBlanc-Talon J., Philips W., Popescu D., Scheunders P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2005. Lecture Notes in Computer Science, vol 3708. Springer, Berlin, Heidelbergen_US
dc.subject1203 Ciencia de los ordenadoresen_US
dc.titleHeuristic algorithm for computing fast template motion in video streamsen_US
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.typeConferenceObjectes
dc.identifier.doi10.1007/11558484_69en_US
dc.identifier.scopus33646199246-
dc.identifier.isi000233133200069-
dc.contributor.authorscopusid13105159100-
dc.contributor.authorscopusid55966875800-
dc.identifier.eissn1611-3349-
dc.description.lastpage554-
dc.description.firstpage547-
dc.relation.volume3708-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.identifier.eisbn978-3-540-32046-3-
dc.utils.revisionen_US
dc.identifier.ulpgces
dc.description.jcr0,402
dc.description.jcrqQ4
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0001-9717-8048-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameHernández Tejera, Francisco Mario-
Appears in Collections:Actas de congresos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.