Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/46784
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Sánchez-Nielsen, Elena | en_US |
dc.contributor.author | Hernández Tejera, Mario | en_US |
dc.date.accessioned | 2018-11-23T08:08:59Z | - |
dc.date.available | 2018-11-23T08:08:59Z | - |
dc.date.issued | 2005 | en_US |
dc.identifier.issn | 1045-0823 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/46784 | - |
dc.description.abstract | Fast and accurate tracking of moving objects in video streams is a critical process in computer vision. This problem can be formulated as exploration problems and thus can be expressed as a search into a state space based representation approach. However, these search problems are hard to solve because they involve search through a high dimensional space. In this paper, we describe an A*heuristic search for computing efficient search through a space of transformations corresponding to the 2D motion of the object, where most promising search alternatives are computed by means of integrating target dynamics into the search process, and ideas from information theory are used to guide the search. The paper includes evaluations with video streams that illustrate the efficiency and suitability for real-time vision tasks on general purpose hardware. Moreover, the computational cost to carry out the tracking task is smaller than real time requirements (40 ms). | en_US |
dc.language | eng | en_US |
dc.source | IJCAI International Joint Conference on Artificial Intelligence [ISSN 1045-0823], p. 1736-1737 | en_US |
dc.subject | 1203 Ciencia de los ordenadores | en_US |
dc.title | An heuristic search based approach for moving objects tracking | en_US |
dc.type | info:eu-repo/semantics/conferenceObject | es |
dc.type | ConferenceObject | es |
dc.identifier.scopus | 34547521335 | - |
dc.identifier.isi | 000290233000339 | - |
dc.contributor.authorscopusid | 13105159100 | - |
dc.contributor.authorscopusid | 55966875800 | - |
dc.description.lastpage | 1737 | - |
dc.description.firstpage | 1736 | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Actas de congresos | en_US |
dc.identifier.ulpgc | Sí | es |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0001-9717-8048 | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Hernández Tejera, Francisco Mario | - |
Colección: | Actas de congresos |
Citas SCOPUSTM
2
actualizado el 01-dic-2024
Citas de WEB OF SCIENCETM
Citations
1
actualizado el 25-feb-2024
Visitas
31
actualizado el 22-jul-2023
Google ScholarTM
Verifica
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.